Bài làm :
Cách 1 :Ta có :
\(\frac{2a+13b}{3a-7b}=\frac{2c+13d}{3a-7d}\)
\(\Rightarrow\frac{2a+13b}{2c+13d}=\frac{3a-7b}{3c-7d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ; ta có :
\(\frac{2a+13b}{2c+13d}=\frac{3a-7b}{3c-7d}=\frac{2a+13b+3a-7b}{2c+13d+3c-7d}=\frac{5a+6b}{5c+6d}\Rightarrow\frac{5a}{5c}=\frac{6b}{6d}\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\)
=> Điều phải chứng minh
Cách 2 :\(\text{Giả sử : }\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có :
\(\frac{2a+13b}{3a-7b}=\frac{2bk+13b}{3bk-7b}=\frac{b\left(2k+13\right)}{b\left(3k-7\right)}=\frac{2k+13}{3k-7}\left(1\right)\)\(\frac{2c+13d}{3c-7d}=\frac{2dk+13d}{3dk-7d}=\frac{d\left(2k+13\right)}{d\left(3k-7\right)}=\frac{2k+13}{3k-7}\left(2\right)\)Từ (1) và (2)
\(\Rightarrow\frac{2a+13b}{3a-7b}=\frac{2c+13d}{3c-7d}\)
=> Điều phải chứng minh