tính M= 1.2+2.3+3.4+...+2002.2003 bàng bao nhiêu???
Tính: M=1.2+2.3+3.4+...+2002.2003
tính tổng M=1.2+2.3+3.4+...+2002.2003
ta có công thức 1.2+2.3+3.4+...+n.(n+1)=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
áp dụng công thức vào bài ta có: 1.2+2.3+3.4+...+2002.2003 = \(\frac{2002.2003.2004}{3}=2678684008\)
M = 1.2 + 2.3 + 3.4 + ... + 2002.2003.
Tìm M
A=1.2+2.3+3.4+...+2002.2003
Tính A?
M= 1.2+2.3+3.4+4.5+5.6,....+2002.2003
tính M
ai giải nhanh nhất mk k
M = 1.2 + 2.3 + 3.4 + 4.5 + 5.6 + ..... + 2002.2003
3.M = 1.2.3 + 2.3.3 + 3.4.3 + 4.5.3 + 5.6.3 + ..... + 2002.2003.3
3.M = 1.2.3 + 2.3. ( 4 - 1 ) + 3.4. ( 5 - 2 ) + 4.5. ( 6 - 3 ) + 5.6. ( 7 - 4 ) + ......... + 2002.2003. ( 2004 - 2001 )
3.M = 1.2.3 + 2.3.4 -1.2.3 + 3.4.5 - 2.3.4 + 4.5.6 - 3.4.5 + 5.6.7 - 4.5.6 + ...... + 2002.2003.2004 - 2001.2002.2003
3.M = 2002.2003.2004
Vậy M = 2002.2003.2004 : 3
M = 2678684008
Dùng công thức \(\frac{n.\left(n+1\right).\left(n+2\right)}{3}\) là ra nha bạn
Tức \(\frac{2002.2003.2004}{3}=2678684008\)
2000/1.2 + 2000/2.3 + 2000/3.4 + ... + 2000/2002.2003
\(\frac{2000}{1.2}+...+\frac{2000}{2002.2003}\)
\(=2000.\left(\frac{1}{1.2}+....+\frac{1}{2002.2003}\right)\)
\(=2000.\left(\frac{1}{1}-\frac{1}{2}+...+\frac{1}{2002}-\frac{1}{2003}\right)
\)
\(=2000.\left(\frac{1}{1}-\frac{1}{2003}\right)=2000.\frac{2002}{2003}\)
đặt A=200/1.2+200/2.3+200/3.4+...+200/2002.2003
A:2000 = 1-1/2+1/2-1/3+...+1/2002-1/2003
A:2000=1-1/2003
A:2000=2002/2003
A=....
k nhe
(1-1/2).(1-1/3).(1-1/4)...(1-1/2002).x=1-1/1.2-1/2.3-1/3.4-...-1/2002.2003
(1-1/2).(1-1/3).(1-1/4)...(1-1/2002).x=1-1/1.2-1/2.3-1/3.4-...-1/2002.2003 ghi loi giai nha ae
so sanh (a+1).(a+2).(a+3)-a.(a+1).(a+2) va 3(a+1).(a+2)
b,tinh
M=1.2+2.3+3.4+...+ 2002.2003
GIUP MINH NHANH LEN NHE CAC BAN!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
tinh
2003/1.2+2003/2.3+...+2003/2002.2003
\(\frac{2003}{1\cdot2}+\frac{2003}{2\cdot3}+...+\frac{2003}{2002\cdot2003}\)
\(=2003\cdot\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{2002\cdot2003}\right)\)
\(=2003\cdot\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\cdot\cdot\cdot+\frac{1}{2002}-\frac{1}{2003}\right)\)
\(=2003\cdot\left(1-\frac{1}{2003}\right)\)
\(=2003\cdot\frac{2002}{2003}\)
\(=\frac{2003\cdot2002}{2003}\)
\(=2002\)