chứng minh rằng tồn tại vô số số n khác 0 để (2^n)-3 chia hết cho 13
Chứng minh rằng tồn tại vô số số tự nhiên để 4n^2+1 chia hết cho 5 và chia hết cho 13.
Bài 1: Chứng minh rằng tồn tại vô số tự nhiên n sao cho \(2^n+1\) chia hết cho n
Bài 2: Tìm x biết:
a) / x+11 / + / 13-x / = 0
b) /2x-2/ - 3x+1 = -2
a) \(\left|x+11\right|+\left|13-x\right|=0\)
\(\Rightarrow\hept{\begin{cases}x+11=0\\13-x=0\end{cases}\Rightarrow\hept{\begin{cases}x=-11\\x=13\end{cases}}}\)
Câu b xét dấu trong // nha bạn
Một số tự nhiên chia hết cho 4 có 3 chữ số đều chẵn , khác nhau và khác 0 . Chứng minh rằng tồn tại cách đổi vị trí các chữ số để được một số mới chia hết cho 4 .
Một số tự nhiên chia hết cho 4 có 3 chữ số đều chẵn , khác nhau và khác 0 . Chứng minh rằng tồn tại cách đổi vị trí các chữ số để được một số mới chia hết cho 4 .
Một số tự nhiên chia hết cho 4 có 3 chữ số đều chẵn , khác nhau và khác 0 . Chứng minh rằng tồn tại cách đổi vị trí các chữ số để được một số mới chia hết cho 4 .
Chứng minh rằng abc chia hết cho 4 thì bac cũng chia hết cho 4
Bài 1: Chứng minh rằng 2002n -138n-1 chia hết cho 207 với mọi số tự nhiên n
Bài 2: Cho số tự nhiên n và n-1 không chia hết cho 4. CHứng minh rằng 7n + 2 không thể là số chính phương
Bài 3: Chứng minh rằng dãy 2n - 3 ( n>1) có vô số số hạng chia hết cho 5 và vô số số hạng chia hết cho 13 nhưng không có số hạng nào chia hết cho 65.
chứng minh rằng nếu n thuộc N thỏa mãn ( n, 2013)=1 thì luôn tồn tại số tự nhiên k khác 0 sao cho nk - 1 chia hết cho 2013 ?
Một số tự nhiên chia hết cho 4 có ba chữ số đều chẵn, khác nhau và khác 0. Chứng minh rằng tồn tại cách đổi vị trí các chữ số để được một số mới chia hết cho 4.
1 . Chứng minh rằng nếu a5 chia hết cho 5 thì a chia hết cho 5 .
2 . Chứng minh rằng nếu tích 5 số bằng 1 thì tổng của chúng không thể bằng 0 .
3 . Chứng minh rằng tồn tại một giá trị n thuộc N* sao cho n2 + n + 1 không phải lá số nguyên tố .
4 Chứng minh rằng nếu n là số nguyên tố lớn hơn 3 thì n2 - 1 chia hết cho 24 .
1.Áp dụng định lý Fermat nhỏ.
1) \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4+5\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4\right)+5\left(a-1\right)a\left(a+1\right)\)
\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)⋮5\)
Vì \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5\)( tích 5 số nguyên liên tiếp chia hết cho 5)
và \(5\left(a-1\right)a\left(a+1\right)⋮5\)
=> \(a^5-a⋮5\)
Nếu \(a^5⋮5\)=> a chia hết cho 5
Cách 2
\(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)
Do a nguyên nên a có 5 dạng:\(5k;5k+1;5k+2;5k+3;5k+4\)
Nếu \(a=5k\Rightarrow a^5-a=5k\left(a-1\right)\left(a+1\right)\left(a^2+1\right)⋮5\)
Nếu \(a=5k+1\Rightarrow a^5-a=a\cdot5k\left(a+1\right)\left(a^2+1\right)⋮5\)
Nếu \(a=5k+2\Rightarrow a^5-a=a\left(a-1\right)\left(a+1\right)\left(25k^2+20k+5\right)⋮5\)
Nếu \(a=5k+3\Rightarrow a^5-a=a\left(a-1\right)\left(a+1\right)\left(25k^2+30k+10\right)⋮5\)
Nếu \(a=5k+4\Rightarrow a^5-a=a\left(a-1\right)\left(5k+5\right)\left(a^2+1\right)⋮5\)
Vậy \(a^5-a⋮5\)