B=150 độ,góc D=90 độ,AB=63‾√3,CD=12.tính độ dài các cạnh AD và BC
Cho hình thang vuông ABCD có góc A = D = 90 độ, đường chéo BD vuông góc với cạnh BC và BD = BC a) Tính các góc của hình thang b) Biết AB = 3cm. Tính độ dài các cạnh BC và CD
a: \(\widehat{C}=45^0\)
\(\widehat{B}=135^0\)
Bài 1: Hình thang ABCD (AB//CD) có AB=AD+BC. Chứng minh rằng các tia phân giác của các góc C và D gặp nhau tại 1 điểm thuộc đáy AB
Bài 2: Hình thang vuông ABCD (góc A = góc D= 90°)có AB =4cm, CD=9cm, BC=13cm. Tính AD
Bài 3: hình thang vuông ABCD (góc A=góc D=90°)có AB =9cm,CD=15cm, AC=17cm. Tính độ dài cạnh bên
Cho hình thang vuông ABCD (góc A= góc D=90 độ ), đường chéo BD vuông góc với cạnh bên BC. Biết AD=12 cm, DC=25 cm. Tính độ dài các cạnh AB, BC, đường chéo BD.
Cho hình thang vuông ABCD, biết AB = 4cm, AD=6 cm, CD=12 cm , góc A = góc D = 90 độ . Tính độ dài BC
(Hình vẽ chưa được chuẩn lắm, bạn vẽ lại cho chuẩn nha)
Vẽ thêm \(BH\perp CD\left(H\in CD\right)\)
Ta có tứ giác ABHD có 3 góc vuông
=> Tứ giác ABHD là hình chữ nhật
=> AB = HD = 4 cm ; AD = BH = 6 cm
=> HC = CD - HD = 12 - 4 = 8 (cm)
Ta thấy: Tam giác BHC vuông tại H
Áp dụng định lý Pytago, ta có: \(BC=\sqrt{BH^2+CH^2}=\sqrt{6^2+8^2}=\sqrt{100}=10\) (Cm)
Vậy BC = 10 cm
Cho hình thang vuông ABCD , góc A = góc D = 90 độ , đg chéo BD vuong góc vs cạnh bên BC , BD = BC
a. tính các góc hình thang
b. Biết AB = 3 cm . tính độ dài cạnh BC , CD
Cho hình thang vuông ABCD có góc A bằng góc D bằng 90 độ, đường chéo BD vuông góc với cạnh bên BC và BD=BC
a) Tính các góc của hình thang
b) Biết AB=3cm. Tính độ dài các cạnh BC, CD
Cho hình thang vuông ABCD có góc A = góc D = 90 độ. Đường chéo BD vuông góc với cạnh bên BC và BD = BC
a ) Tính các góc của hình thang.
b ) Biết AB = 3cm .Tính độ dài 2 cạnh BC và CD.
1, Cho hình thang ABCD ( AB // CD ) có góc B - góc C = 24° , góc A = 1,5 góc D . Tính các góc của hình thang .
2. Cho hình thang vuông ABCD ( góc A = góc D = 90°) đường chéo BD vuông góc với cạnh bên BC và BD = BC :
a, Tính các góc của hình thang .
b, Biết AB = 3 cm , Tính độ dài các cạnh BC,CD .