Chung minh (a + c)^2 / a^2 - c^2 = (b + d)^2 / b^2 - d^2
Biet a/b = c/d
cho a/b=c/d Chung minh a^2+b^2 / a^2 -b^2 = c^2+d^2 /c^2 -d^2
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)
\(\Rightarrow\hept{\begin{cases}\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\\\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\end{cases}}\)
\(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{a^2-b^2}{c^2-d^2}\)
\(\Rightarrow\frac{a^2+b^2}{a^2-b^2}=\frac{c^2+d^2}{c^2-d^2}\)
Vậy \(\frac{a^2+b^2}{a^2-b^2}=\frac{c^2+d^2}{c^2-d^2}\)
cho a^2+b^2+(a-b)^2=c^2+d^2+(c-d)^2.chung minh a^4+b^4+(a-b)^4=c^4+d^4+(c-d)^4
chung minh :a^2+b^2+c^2+d^2>=2(a+b+c+d) voi moi a,b,c,d
Ta có : 4( b² + c² + d² + e²) ≥( b + c + d +e )² ( dễ lắm, bạn tự cm lấy nhé, )
=> ( b² + c² + d² + e²) ≥ ( b + c + d +e )²/4 (*)
G/s bdt đề bài đúng, ta có:
<=> a² + b²+ c² + d²+ e² - a(b + c + d +e) ≥ 0
Lại có ( *) => ta có : a² + b²+ c² + d² + e² - a(b + c + d +e) ≥ a² + ( b + c + d +e )²/4 - a(b + c + d +e)
<=> [ a - ( b + c+ d +e)/2]² => hiển nhiên đúng
Vậy ta có dpcm.
Với cách này ta cũng có thể chứng minh các bdt tương tự với 3 biến, 4 biến v.v....
CHo ti le thuc a/b=c/d Chung minh rang (a+b/c+d)^2=a^2+b^2/c^2+d^2
cho 4 so a,b,c,d sao cho a.c=b^2,b.d=c^2. chung minh a/d=a^2+b^2+c^2/b^2+c^2+d^2
chõa+d=c+b và a^2+d^2=b^2+c^2
chung minh rang a/b=c/d
chung minh a*b/c*d=a^2+b^2/c^2 +d^2
chung minh a*b/c*d=a^2+b^2/c^2 +d^2
Cho a+b=c+d va a^2+b^2=c^2+d^2.Chung minh rang:a^2022+b^2022=c^2022+d^2022
Moi nguoi giup minh voi,minh dang can gap