Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Silent Kyz

Chung minh (a + c)^2 / a^2 - c^2 = (b + d)^2 / b^2 - d^2

Biet a/b = c/d

Xyz OLM
2 tháng 9 2020 lúc 15:59

\(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Ta có : \(\frac{\left(a+c\right)^2}{a^2-c^2}=\frac{\left(a+c\right)^2}{a^2-ac+ac-c^2}=\frac{\left(a+c\right)^2}{a\left(a-c\right)+c\left(a-c\right)}=\frac{\left(a+c\right)^2}{\left(a+c\right)\left(a-c\right)}=\frac{a+c}{a-c}\)

\(=\frac{bk+dk}{bk-dk}=\frac{k\left(b+d\right)}{k\left(b-d\right)}=\frac{b+d}{b-d}\)(1)

Lại có \(\frac{\left(b+d\right)^2}{b^2-d^2}=\frac{\left(b+d\right)^2}{b^2-bd+bd-d^2}=\frac{\left(b+d\right)^2}{b\left(b-d\right)+d\left(b-d\right)}=\frac{\left(b+d\right)^2}{\left(b-d\right)\left(b+d\right)}=\frac{b+d}{b-d}\left(2\right)\)

Từ (1) (2) => \(\frac{\left(a+c\right)^2}{a^2-c^2}=\frac{\left(b+d\right)^2}{b^2-d^2}\)

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
2 tháng 9 2020 lúc 16:03

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

\(\frac{\left(a+c\right)^2}{a^2-c^2}=\frac{\left(a+c\right)\left(a+c\right)}{\left(a-c\right)\left(a+c\right)}=\frac{a+c}{a-c}=\frac{bk+dk}{bk-dk}=\frac{k\left(b+d\right)}{k\left(b-d\right)}=\frac{b+d}{b-d}\)(1)

\(\frac{\left(b+d\right)^2}{b^2-d^2}=\frac{\left(b+d\right)\left(b+d\right)}{\left(b-d\right)\left(b+d\right)}=\frac{b+d}{b-d}\)(2)

Từ (1) và (2) => đpcm 

Khách vãng lai đã xóa
Trí Tiên
2 tháng 9 2020 lúc 16:03

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\)

\(\Rightarrow\frac{a+c}{b+d}=\frac{a-c}{b-d}\)

\(\Rightarrow\frac{a+c}{a-c}=\frac{b+d}{b-d}\)

\(\Rightarrow\frac{\left(a+c\right).\left(a+c\right)}{\left(a-c\right).\left(a+c\right)}=\frac{\left(b+d\right).\left(b+d\right)}{\left(b-d\right).\left(b+d\right)}\)

\(\Leftrightarrow\frac{\left(a+c\right)^2}{a^2-c^2}=\frac{\left(b+d\right)^2}{b^2-d^2}\) ( đpcm )

Khách vãng lai đã xóa
Bellion
2 tháng 9 2020 lúc 19:39

           Bài làm :

 \(\text{Đặt : }\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

\(\frac{\left(a+c\right)^2}{a^2-c^2}=\frac{\left(a+c\right)\left(a+c\right)}{\left(a-c\right)\left(a+c\right)}=\frac{a+c}{a-c}=\frac{bk+dk}{bk-dk}=\frac{k\left(b+d\right)}{k\left(b-d\right)}=\frac{b+d}{b-d}\left(1\right)\)

\(\frac{\left(b+d\right)^2}{b^2-d^2}=\frac{\left(b+d\right)\left(b+d\right)}{\left(b-d\right)\left(b+d\right)}=\frac{b+d}{b-d}\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow\frac{\left(a+c\right)^2}{a^2-c^2}=\frac{\left(b+d\right)^2}{b^2-d^2}\)

=> Điều phải chứng minh

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nguyễn Anh Thư
Xem chi tiết
Ngô Văn Nam
Xem chi tiết
Don't Be Shine Gamin...
Xem chi tiết
nguyễn mai anh
Xem chi tiết
Nguyen Tuan Dung
Xem chi tiết
khanh
Xem chi tiết
tung vu
Xem chi tiết
Hà Anh Tuấn
Xem chi tiết
Hoa Sen
Xem chi tiết