\(-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{2.1}\)
\(\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-\frac{...1}{2.1}=?\)
\(\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)=?
= (1/99-1/100)- (1/98-1/99)-...(1/1-1/2)
= -(1/1-1/2+1/3-1/4+...+1/99-1/100)
=-(1/1-1/100)
=-99/100
trong câu hỏi tương tự rõ hơn
tính nhanh : \(C=\frac{1}{100}-\frac{1}{100.99}\frac{1}{99.98}-\frac{1}{98.97}-...........-\frac{1}{3.2}-\frac{1}{2.1}\)
\(C=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(C=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(C=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(C=\frac{1}{100}-\left(1-\frac{1}{100}\right)\)
\(C=\frac{1}{100}-1+\frac{1}{100}\)
\(C=\frac{-49}{50}\)
C = 1/100 - 1/100.99 - 1/99.98 - 1/98.97 - ... - 1/3.2 - 1/2.1
C = 1/100 - (1/100.99 + 1/99.98 + 1/98.97 + ... + 1/3.2 + 1/2.1)
C = 1/100 - (1/1.2 + 1/2.3 + ... + 1/98.99 + 1/99.100)
C = 1/100 - (1 - 1/2 + 1/2 - 1/3 + ... + 1/98 - 1/99 + 1/99 - 1/100)
C = 1/100 - (1 - 1/100)
C = 1/100 - 99/100
C = -98/100 = -49/50
\(c=\frac{1}{100}-\frac{1}{100.98}\frac{1}{99.98}\frac{1}{98.97}-......-\frac{1}{3.2}-\frac{1}{2.1}\)=\(\frac{1}{100}-\left[\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\right]\) =\(\frac{1}{100}-\left[1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{98}+\frac{1}{99}-\frac{1}{100}\right]\)=\(\frac{1}{100}-\left[1-\frac{1}{100}\right]=\frac{1}{100}-\frac{99}{100}=\frac{-98}{100}=\frac{49}{50}\)
Tính:
\(\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}.\)
\(=-\left(\frac{1}{1.2}+\frac{1}{2.3}=...+\frac{1}{97.98}+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(=-\left(1-\frac{1}{2}+\frac{1}{2}+\frac{1}{3}+\frac{1}{3}-...-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right).\)
\(=-\left(1-\frac{1}{100}\right)=-\frac{99}{100}\)
chúc bạn học tốt
Trả lời
1/100.99-1/99.98-1/98.97-...-1/3.2-1/2.1
=1/100-1/1
=1/100-100/100
=-99/100.
\(\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=\frac{1}{100.99}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\right)\)
\(=\frac{1}{100.99}-\left(1-\frac{1}{99}\right)\)
\(=\frac{1}{100.99}-\frac{98}{99}\)
\(=\frac{1}{100.99}-\frac{9800}{99.100}\)
\(=\frac{-9799}{9900}\)
Cho S=\(\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
S=\(\frac{1}{100}-\frac{1}{99}-\frac{1}{99}+\frac{1}{98}-\frac{1}{98}+\frac{1}{97}-......-\frac{1}{3}+\frac{1}{2}-\frac{1}{2}+1\)\(=1-\frac{1}{100}-\frac{2}{99}\)\(=\frac{9601}{9900}\)
\(C=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}=?\)
=> C = \(-\frac{1}{1.2}-\frac{1}{2.3}-...-\frac{1}{99.100}+\frac{1}{100}\)
=> C = \(-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)+\frac{1}{100}\)
=> C = \(-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)+\frac{1}{100}\)
=> C = \(-\left(1-\frac{1}{100}\right)+\frac{1}{100}\)
=> C =\(-1+\frac{1}{100}+\frac{1}{100}\)
=> C = \(-1+\left(\frac{1}{100}+\frac{1}{100}\right)\)
=> C = \(-1+\frac{1}{50}\)
=> C = \(-\frac{49}{50}\)
KL : C = \(-\frac{49}{50}\)
\(A=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
Ta có:
\(A=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=\frac{1}{100}-\left(\frac{1}{99}-\frac{1}{100}\right)-\left(\frac{1}{98}-\frac{1}{99}\right)-\left(\frac{1}{97}-\frac{1}{98}\right)-...-\left(\frac{1}{2}-\frac{1}{3}\right)-\left(1-\frac{1}{2}\right)\)
\(=\frac{1}{100}-\frac{1}{99}+\frac{1}{100}-\frac{1}{98}+\frac{1}{99}-\frac{1}{97}+\frac{1}{98}...-\frac{1}{2}+\frac{1}{3}-1+\frac{1}{2}\)
\(=\frac{1}{100}+\frac{1}{100}-1\)
\(=\frac{1}{50}-\frac{50}{50}\)
\(=-\frac{49}{50}\)
Câu này khó quá ta mình suy nghĩ này giờ mà vẫn chưa ra
thực hiện phép tính:
\(\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
Ta có:\(\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=\frac{1}{9900}-\left(\frac{1}{99.98}+\frac{1}{98.97}+\frac{1}{97.96}+....+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
\(=\frac{1}{9900}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}\right)\)
\(=\frac{1}{9900}-\left(1-\frac{1}{99}\right)\)
\(=\frac{1}{9900}-\frac{98}{99}=-\frac{9799}{9900}\)
\(\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=\frac{1}{100.99}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}\right)\)
\(=\frac{1}{9900}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}\right)\)
\(=\frac{1}{9900}-\left(1-\frac{1}{99}\right)\)
\(=\frac{1}{9900}-\frac{98}{99}=-\frac{9799}{9900}\)
\(\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=\frac{1}{100.99}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}\right)\)
\(=\frac{1}{9900}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}\right)\)
\(=\frac{1}{9900}-\left(1-\frac{1}{99}\right)\)
\(=\frac{1}{9900}-\frac{98}{99}=-\frac{9799}{9900}\)
C = \(\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-....-\frac{1}{3.2}-\frac{1}{2.1}.\)
C = 1/100 - 1/100.99 - 1/99.98 - 1/98.97 - ... - 1/3.2 - 1/2.1
C = 1/100 - (1/100.99 + 1/99.98 + 1/98.97 + ... + 1/3.2 + 1/2.1)
C = 1/100 - (1/1.2 + 1/2.3 + ... + 1/97.98 + 1/98.99 + 1/99.100)
C = 1/100 - (1 - 1/2 + 1/2 - 1/3 + ... + 1/97 - 1/98 + 1/98 - 1/99 + 1/99 - 1/100)
C = 1/100 - ( 1 - 1/100)
C = 1/100 - 99/100
C = -98/100 = -49/50