Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trương Ngọc Trâm
Xem chi tiết
Nguyễn Hoàng Mỹ Ý
Xem chi tiết
Bùi Hồng Thắm
19 tháng 9 2015 lúc 13:53

= (1/99-1/100)- (1/98-1/99)-...(1/1-1/2)

= -(1/1-1/2+1/3-1/4+...+1/99-1/100)

=-(1/1-1/100)

=-99/100

trong câu hỏi tương tự rõ hơn

tran huu loi
Xem chi tiết
Hồ Thu Giang
13 tháng 7 2016 lúc 14:09

\(C=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(C=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{98.99}+\frac{1}{99.100}\right)\)

\(C=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)

\(C=\frac{1}{100}-\left(1-\frac{1}{100}\right)\)

\(C=\frac{1}{100}-1+\frac{1}{100}\)

\(C=\frac{-49}{50}\)

soyeon_Tiểu bàng giải
13 tháng 7 2016 lúc 14:10

C = 1/100 - 1/100.99 - 1/99.98 - 1/98.97 - ... - 1/3.2 - 1/2.1

C = 1/100 - (1/100.99 + 1/99.98 + 1/98.97 + ... + 1/3.2 + 1/2.1)

C = 1/100 - (1/1.2 + 1/2.3 + ... + 1/98.99 + 1/99.100)

C = 1/100 - (1 - 1/2 + 1/2 - 1/3 + ... + 1/98 - 1/99 + 1/99 - 1/100)

C = 1/100 - (1 - 1/100)

C = 1/100 - 99/100

C = -98/100 = -49/50

tran huu loi
13 tháng 7 2016 lúc 14:19

\(c=\frac{1}{100}-\frac{1}{100.98}\frac{1}{99.98}\frac{1}{98.97}-......-\frac{1}{3.2}-\frac{1}{2.1}\)=\(\frac{1}{100}-\left[\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\right]\) =\(\frac{1}{100}-\left[1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{98}+\frac{1}{99}-\frac{1}{100}\right]\)=\(\frac{1}{100}-\left[1-\frac{1}{100}\right]=\frac{1}{100}-\frac{99}{100}=\frac{-98}{100}=\frac{49}{50}\)

Girl Cute
Xem chi tiết
Lê Khôi Mạnh
6 tháng 7 2019 lúc 8:33

\(\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}.\)

\(=-\left(\frac{1}{1.2}+\frac{1}{2.3}=...+\frac{1}{97.98}+\frac{1}{98.99}+\frac{1}{99.100}\right)\)

\(=-\left(1-\frac{1}{2}+\frac{1}{2}+\frac{1}{3}+\frac{1}{3}-...-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right).\)

\(=-\left(1-\frac{1}{100}\right)=-\frac{99}{100}\)

chúc bạn học tốt

Rinu
6 tháng 7 2019 lúc 8:34

Trả lời

1/100.99-1/99.98-1/98.97-...-1/3.2-1/2.1

=1/100-1/1

=1/100-100/100

=-99/100.

Lê Tài Bảo Châu
6 tháng 7 2019 lúc 8:34

\(\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(=\frac{1}{100.99}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\right)\)

\(=\frac{1}{100.99}-\left(1-\frac{1}{99}\right)\)

\(=\frac{1}{100.99}-\frac{98}{99}\)

\(=\frac{1}{100.99}-\frac{9800}{99.100}\)

\(=\frac{-9799}{9900}\)

Phạm Tuấn Tài
Xem chi tiết
Huỳnh Diệu Bảo
17 tháng 1 2016 lúc 7:35

S=\(\frac{1}{100}-\frac{1}{99}-\frac{1}{99}+\frac{1}{98}-\frac{1}{98}+\frac{1}{97}-......-\frac{1}{3}+\frac{1}{2}-\frac{1}{2}+1\)\(=1-\frac{1}{100}-\frac{2}{99}\)\(=\frac{9601}{9900}\)

Huỳnh Diệu Bảo
17 tháng 1 2016 lúc 7:29

tính phải ko

 

Nguyenvananh33
Xem chi tiết
Nguyễn Thu Trang
12 tháng 6 2015 lúc 17:47

=> C = \(-\frac{1}{1.2}-\frac{1}{2.3}-...-\frac{1}{99.100}+\frac{1}{100}\)

=> C = \(-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)+\frac{1}{100}\)

=> C = \(-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)+\frac{1}{100}\)

=> C = \(-\left(1-\frac{1}{100}\right)+\frac{1}{100}\)

=>  C =\(-1+\frac{1}{100}+\frac{1}{100}\)

=> C = \(-1+\left(\frac{1}{100}+\frac{1}{100}\right)\)

=> C = \(-1+\frac{1}{50}\)

=> C =  \(-\frac{49}{50}\)

KL : C = \(-\frac{49}{50}\)

Trần Thị Tình
Xem chi tiết
Le Thi Khanh Huyen
23 tháng 8 2015 lúc 18:37

Ta có:

\(A=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(=\frac{1}{100}-\left(\frac{1}{99}-\frac{1}{100}\right)-\left(\frac{1}{98}-\frac{1}{99}\right)-\left(\frac{1}{97}-\frac{1}{98}\right)-...-\left(\frac{1}{2}-\frac{1}{3}\right)-\left(1-\frac{1}{2}\right)\)

\(=\frac{1}{100}-\frac{1}{99}+\frac{1}{100}-\frac{1}{98}+\frac{1}{99}-\frac{1}{97}+\frac{1}{98}...-\frac{1}{2}+\frac{1}{3}-1+\frac{1}{2}\)

\(=\frac{1}{100}+\frac{1}{100}-1\)

\(=\frac{1}{50}-\frac{50}{50}\)

\(=-\frac{49}{50}\)

Yuan Bing Yan _ Viên Băn...
23 tháng 8 2015 lúc 18:36

Câu này khó quá ta mình suy nghĩ này giờ mà vẫn chưa ra

Saito Haijme
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
8 tháng 9 2016 lúc 13:24

Ta có:\(\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(=\frac{1}{9900}-\left(\frac{1}{99.98}+\frac{1}{98.97}+\frac{1}{97.96}+....+\frac{1}{3.2}+\frac{1}{2.1}\right)\)

\(=\frac{1}{9900}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}\right)\)

\(=\frac{1}{9900}-\left(1-\frac{1}{99}\right)\)

\(=\frac{1}{9900}-\frac{98}{99}=-\frac{9799}{9900}\)

Huy Hoang
30 tháng 12 2017 lúc 21:02

\(\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(=\frac{1}{100.99}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}\right)\)

\(=\frac{1}{9900}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}\right)\)

\(=\frac{1}{9900}-\left(1-\frac{1}{99}\right)\)

\(=\frac{1}{9900}-\frac{98}{99}=-\frac{9799}{9900}\)

soyeon_Tiểu bàng giải
8 tháng 9 2016 lúc 11:06

\(\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(=\frac{1}{100.99}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}\right)\)

\(=\frac{1}{9900}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}\right)\)

\(=\frac{1}{9900}-\left(1-\frac{1}{99}\right)\)

\(=\frac{1}{9900}-\frac{98}{99}=-\frac{9799}{9900}\)

Trần Văn An
Xem chi tiết
soyeon_Tiểu bàng giải
15 tháng 6 2016 lúc 21:16

C = 1/100 - 1/100.99 - 1/99.98 - 1/98.97 - ... - 1/3.2 - 1/2.1

C = 1/100 - (1/100.99 + 1/99.98 + 1/98.97 + ... + 1/3.2 + 1/2.1)

C = 1/100 - (1/1.2 + 1/2.3 + ... + 1/97.98 + 1/98.99 + 1/99.100)

C = 1/100 - (1 - 1/2 + 1/2 - 1/3 + ... + 1/97 - 1/98 + 1/98 - 1/99 + 1/99 - 1/100)

C = 1/100 - ( 1 - 1/100)

C = 1/100 - 99/100

C = -98/100 = -49/50