\(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\frac{3}{11\cdot14}+\frac{3}{14\cdot17}\)
\(F=\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\frac{3}{11\cdot14}+...+\frac{3}{2006\cdot2009}\)
\(F=\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{2006.2009}\)
\(F=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{2006}-\frac{1}{2009}\)
\(F=\frac{1}{5}-\frac{1}{2009}\)
\(F=\frac{2004}{10045}\)
\(F=\frac{3}{5.8}+\frac{3}{8.11}+\frac{1}{11.14}+...+\frac{3}{2006.2009}\)
\(F=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{2006}-\frac{1}{2009}\)
\(F=\frac{1}{5}-\frac{1}{2009}\)
\(F=0\)
F = 1/5 - 1/8 + 1/8 - 1/11 +,,,+1/2006 - 1/2009
F = 1/5 - 1/2009
F = 2008/10044
Chúc bạn học tốt
\(\frac{3^2}{2\cdot11}+\frac{3^2}{11\cdot14}+\frac{3^2}{14\cdot17}+...+\frac{3^2}{197\cdot200}\)
tính nhanh nhé
\(\frac{3^2}{2\cdot11}+\frac{3^2}{11\cdot14}+...+\frac{3^2}{197\cdot200}=\frac{3^2}{2\cdot11}+\left(\frac{3^2}{11\cdot14}+...+\frac{3^2}{197\cdot200}\right)\)
\(=\frac{9}{22}+3\left(\frac{3}{11\cdot14}+...+\frac{3}{197\cdot200}\right)=\frac{9}{22}+3\left(\frac{1}{11}-\frac{1}{14}+...+\frac{1}{197}-\frac{1}{200}\right)\)
\(=\frac{9}{22}+3\left(\frac{1}{11}-\frac{1}{200}\right)=\frac{9}{22}+3\left(\frac{200}{2200}-\frac{11}{2200}\right)=\frac{9}{22}+3\cdot\frac{189}{2200}\)
\(=3\cdot\left(\frac{3}{22}+\frac{189}{2200}\right)=3\cdot\left(\frac{300}{2200}+\frac{189}{2200}\right)=3\cdot\frac{489}{2200}=\frac{1467}{2200}\)
S= \(\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+\frac{1}{11\cdot14}+......+\frac{1}{97\cdot100}\)
\(S=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{97.100}\)
\(S=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{97.100}\right)\)
\(S=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(S=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(S=\frac{1}{3}.\frac{49}{100}=\frac{49}{300}\)
Ta có: \(S=\frac{1}{2.5}+\frac{1}{5.8}+....+\frac{1}{97.100}.\)
\(\Rightarrow3S=\frac{3}{2.5}+\frac{3}{5.8}+....+\frac{3}{97.100}\)
\(\Rightarrow3S=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{97}-\frac{1}{100}\)
\(\Rightarrow3S=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)
\(\Rightarrow S=\frac{49}{100}:3=\frac{49}{300}\)
Vậy \(S=\frac{49}{300}\)
CHÚC BẠN HỌC TỐT
\(S=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+\frac{1}{11\cdot14}+...+\frac{1}{97\cdot100}\)
\(S=3\cdot\frac{1}{3}\cdot\left(\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+\frac{1}{11\cdot14}+...+\frac{1}{97\cdot100}\right)\)
\(S=\frac{1}{3}\cdot\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\frac{3}{11\cdot14}+...+\frac{3}{97\cdot100}\right)\)
\(S=\frac{1}{3}\cdot\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(S=\frac{1}{3}\cdot\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(S=\frac{1}{3}\cdot\left(\frac{50}{100}-\frac{1}{100}\right)\)
\(S=\frac{1}{3}\cdot\frac{49}{100}\)
\(S=\frac{49}{300}\)
D=\(\frac{6}{15\cdot18}+\frac{6}{18\cdot21}+\frac{6}{21\cdot24}+...+\frac{6}{87\cdot90}\)
E=\(\frac{3^2}{8\cdot11}+\frac{3^2}{11\cdot14}+\frac{3^2}{14\cdot17}+...+\frac{3^2}{197\cdot200}\)
b3 tính nhanh nếu có thể
a \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\)
b \(\frac{1}{2}\cdot\frac{1}{2}+\frac{1}{2}\cdot\frac{1}{3}+\frac{1}{3}\cdot\frac{1}{4}+\frac{1}{4}\cdot\frac{1}{5}+\frac{1}{5}\cdot\frac{1}{6}\)
c\(1\frac{1}{24}\cdot5\frac{2}{5}\cdot2-3\frac{7}{9}\cdot2\frac{2}{17}\)
d\(2\frac{3}{13}\cdot\frac{26}{58}\cdot4\cdot2\frac{15}{24}\cdot\frac{8}{21}\)
e \(\left(1-\frac{6}{11}\right)-\frac{5}{11}\)
f\(\left(\frac{15}{7}-\frac{2}{3}\right)+\frac{2}{3}\)
g\(\left(\frac{5}{8}-\frac{1}{4}\right)+\frac{3}{8}\)
\(h\frac{3}{3\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\frac{3}{11\cdot14}+\frac{3}{14\cdot17}+\frac{3}{17\cdot20}\)
a) \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\frac{1}{16}-\frac{1}{32}\)
\(=1-\frac{1}{32}=\frac{31}{32}\)
b) \(\frac{1}{2}.\frac{1}{2}+\frac{1}{2}.\frac{1}{3}+\frac{1}{3}.\frac{1}{4}+\frac{1}{4}.\frac{1}{5}+\frac{1}{5}.\frac{1}{6}\)\
\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(\frac{1}{4}-\frac{1}{6}=\frac{1}{12}\)
Tính :
\(B=\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{23\cdot26}\)
9 tk danh cho nguoi đầu tiên
\(B=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{23.26}\)
\(B=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+....+\frac{1}{23}-\frac{1}{26}\)
\(B=\frac{1}{2}-\frac{1}{26}\)
\(B=\frac{13}{26}-\frac{1}{26}\)
\(B=\frac{12}{26}=\frac{4}{13}\)
Ta có: 3/2.5=3/3.(1/2-1/5)
3/5.8=3/3.(1/5-1/8)
3/8.11=3/3.(1/8-1/11)
...............................
3/23.26=3/3.(1/23-1/26)
Cộng từng vế ta đc:
B=3/3.(1/5-1/26)=1.21/130=21/130
B = 1/2 - 1/5 + 1/5 - 1/8 + 1/8 - ... - 1/26
B = 1/2 - 1/26
B = 6/13 nha bạn
Tìm số nguyên âm a biết:
\(a^2-\left(\frac{3}{5}\right)^2=\frac{1}{1\cdot2}+\frac{1}{2\cdot7}+\frac{1}{7\cdot5}+\frac{1}{5\cdot13}+\frac{1}{13\cdot8}+\frac{1}{8\cdot19}+\frac{1}{19\cdot11}+\frac{1}{11\cdot25}\)
bÀI LÀM
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Tính tổng 1000 số hạng trong dãy số sau
\(1\frac{1}{3};1\frac{1}{8};1\frac{1}{15};...\)
Tìm x :
\(\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+\frac{1}{11\cdot14}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)
a)1/5.8+1/8.11+1/11.14+...+1/x(x+3)=101/1540
<=>1/3(3/5.8+3/8.11+...+3/x(x+3) =101/1540
<=>1/3(1/5-1/8+1/8-1/11+...+1/x-1/x+3=101/1540
<=>1/5-1/x+3=303/1540<=>1/x+3=1/308
<=>x+3=308<=>x=305
Nguồn CHTT, hihi !
Tham gia event này đi mọi người https://olm.vn/hoi-dap/detail/227766827875.html
\(\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+\frac{1}{11\cdot14}...+\frac{1}{605\cdot608}\)
ta có A =\(\frac{1}{5\cdot8}+\frac{1}{8\cdot12}+\frac{1}{12\cdot15}+...+\frac{1}{605\cdot608}\)
3A =\(\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\frac{3}{11\cdot14}+...+\frac{3}{605\cdot608}\)
3A =\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{605}-\frac{1}{608}\)
3A=\(\frac{1}{5}-\frac{1}{608}\)
3A=\(\frac{603}{3040}\)A =\(\frac{201}{3040}\)
Đặt A=\(\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{605.608}\)
3A=\(3.\left(\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{605.608}\right)\)
3A=\(3.\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{605}-\frac{1}{608}\right)\)
3A=3.\(\left(\frac{1}{5}-\frac{1}{608}\right)\)
A=\(\frac{201}{3040}\)