tìm x để \(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{10300}=\frac{1}{x}\)
Tìm x biết:\(\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{65.68}\right)x-\frac{7}{34}=\frac{19}{68}\)Trả Lời x =
Cậu mới thi viuolympic sao mk cũng mới đăng
Tìm x:
\(\frac{3x}{2.5}+\frac{3x}{5.8}+\frac{3x}{8.11}+\frac{3x}{8.11}=\frac{1}{21}\)
Tìm x biết : \(\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{65.68}\right)x-\frac{7}{34}=\frac{19}{68}\)
Trả lỡi x
đặt \(\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+....+\frac{1}{65.68}\right)\)là A
Ax=\(\frac{19}{68}+\frac{7}{34}=\frac{33}{68}\)
3A=\(3.\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{11}{8.11}+...+\frac{1}{65.68}\right)\)
3A=\(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{65.68}\)
3A=\(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{65}-\frac{1}{68}\)
3A=\(\frac{1}{2}-\frac{1}{68}=\frac{33}{68}\)
A=33/68:3=11/68
\(\Rightarrow\)33/68:11/68=3
vậy x= 3
Trả lời giúp mk nha mk cho 3 h lun nói thietj ó
Tim x biet:\(\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{65.68}\right)x-\frac{7}{34}=\frac{19}{68}\)
(1/2.5+1/5.8+....+1/65.68)x=19/68+7/34=33/68
(1/2.5+1/5.8+.....+1/65.68).3.x=33/68.3=99/68
(3/2.5+3/5.8+........3/65.68)x =99/68
(1/2-1/68)x=99/68
33/68x=99/68
=>x=3
cho mình nha
Tìm x:
a) 100 - 7 . (x - 5) = 58
b) \(x+\frac{1}{3}=\frac{7}{26}.\frac{13}{6}\)
c) \(\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+..........+\frac{1}{97.100}\right)x=\frac{98}{100}\)
a) 100 - 7 . (x - 5) = 58
7. (x - 5) = 100 - 58
7. (x - 5) = 42
x - 5 = 42 : 7
x - 5 = 6
x = 6 + 5
x = 11
b)\(x+\frac{1}{3}=\frac{7}{26}.\frac{13}{6}\)
\(x+\frac{1}{3}=\frac{7}{12}\)
\(x=\frac{7}{12}-\frac{1}{3}\)
\(x=\frac{3}{12}=\frac{1}{4}\)
\(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+\frac{1}{14.17}+\frac{1}{17.20}\)
\(\frac{1}{3}.\left[\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{17}-\frac{1}{20}\right]\)
\(\frac{1}{3}\left[\frac{1}{2}-\frac{1}{20}\right]=\frac{1}{3}.\frac{9}{20}=\frac{3}{20}\)
mk đầu tiên đó
\(=1\div3.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+....+\frac{1}{17}-\frac{1}{20}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{20}\right)\)
\(=\frac{1}{3}\times\frac{9}{20}\)
\(=\frac{3}{20}\)
Tính: A = \(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+....+\frac{1}{92.95}+\frac{1}{95.98}\)
A = \(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{92.95}+\frac{1}{95.98}\)
A = \(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{95}-\frac{1}{98}\)
A = \(\frac{1}{2}-\frac{1}{98}\)
A = \(\frac{24}{49}\)
Vậy A = \(\frac{24}{49}\)
~~~
#Sunrise
\(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{92.95}+\frac{1}{95.98}\)
\(=\frac{1}{3}\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{92.95}+\frac{3}{95.98}\right)\)
\(=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{92}-\frac{1}{95}+\frac{1}{95}-\frac{1}{98}\right)\)
\(=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{98}\right)\)
\(=\frac{1}{3}.\frac{24}{49}=\frac{8}{49}\)
A=1/3.(1/2-1/5 + 1/5 - 1/8 +......+1/92 - 1/95 + 1/95 - 1/98)
A=1/3.(1/2 - 1/98)
A=1/3. 48/98
A=48/294
Theo mk thì như vậy
Chúc bạn hok tốt ^O^
Tính \(S=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{101.104}\)
3S=3/2.5+3/5.8+3/8.11+...+3/101.104
3S=1/2-1/5+1/5-1/8+1/8-1/11+...+1/101-1/104
3S=1/2-1/104
S=51/104:3
S=17/104
Vậy S=17/104
\(S=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+........+\frac{1}{101.104}\)
\(\Rightarrow3S=3\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+.......+\frac{1}{101.104}\right)\)
\(=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+........+\frac{3}{101.104}\)
\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+.........+\frac{1}{101}-\frac{1}{104}\)
\(=\frac{1}{2}-\frac{1}{104}\)
\(=\frac{51}{104}\)
\(\Rightarrow S=\frac{51}{104}:3=\frac{51}{104}.\frac{1}{3}\)
\(=\frac{7}{104}\)
VẬY \(S=\frac{7}{104}\)
TÍNH
\(1-\frac{1}{2.5}-\frac{1}{5.8}-\frac{1}{8.11}-...-\frac{1}{92.95}\)
\(1-\frac{1}{2\cdot5}-\frac{1}{5\cdot8}-\frac{1}{8\cdot11}-...-\frac{1}{92\cdot95}\)
\(=1-\left(\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{92\cdot95}\right)\)
\(=1-\frac{1}{3}\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{2}{92\cdot95}\right)\)
\(=1-\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{92}-\frac{1}{95}\right)\)
\(=1-\frac{1}{3}\left(\frac{1}{2}-\frac{1}{95}\right)\)
\(=1-\frac{1}{3}\cdot\frac{93}{190}\)
\(=1-\frac{31}{190}\)
\(=\frac{159}{190}\)
\(1-\frac{1}{2.5}-\frac{1}{5.8}-\frac{1}{8.11}-...-\frac{1}{92.95}\)
\(=1-\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{92.95}\right)\)
\(=1-\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{92.95}\right)\)
\(=1-\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{92}-\frac{1}{95}\right)\)
\(=1-\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{95}\right)\)
\(=1-\frac{1}{3}.\frac{93}{190}\)
\(=1-\frac{31}{190}\)
\(=\frac{159}{190}\)
\(1-\frac{1}{2.5}-\frac{1}{5.8}-..-\frac{1}{92.95}=1-\left(\frac{1}{2.5}+\frac{1}{5.8}+...+\frac{1}{92.95}\right)\)
\(=1-\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+..+\frac{1}{92}-\frac{1}{95}\right)\)
\(=1-\frac{1}{3}\left(\frac{1}{2}-\frac{1}{95}\right)\)
\(=1-\frac{1}{3}.\frac{93}{190}=1-\frac{31}{190}=\frac{159}{190}\)
học tốt nha