So sánh: \(\frac{n+1}{n+2}\)và \(\frac{n+3}{n+4}\)
so sánh 2 phân số
a) \(\frac{n+1}{n+2}\)và \(\frac{n+3}{n+4}\)
b) \(\frac{n}{n+3}\)và \(\frac{n-1}{n+4}\)
so sánh
a) \(\frac{n}{n+1}và\frac{n+2}{n+3}\)
b) \(\frac{n}{n+3}và\frac{n-1}{n+4}\)
Biết n!=1.2.3...n \(\left(n\inℕ^∗;n\ge2\right)\)và \(A=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+......+\frac{2014}{2015!}\)
Hãy so sánh A với 1
Ta có \(A=\frac{1}{2!}+\frac{2}{3!}+...+\frac{2014}{2015!}\)
=> \(A=\frac{2-1}{2!}+\frac{3-1}{3!}+...+\frac{2015-1}{2015!}\)
=> \(A=\frac{2}{2!}-\frac{1}{2!}+\frac{3}{3!}-\frac{1}{3!}+...+\frac{2015}{2015!}-\frac{1}{2015!}\)
=> \(A=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+...+\frac{1}{2014!}-\frac{1}{2015!}\)
=> \(A=1-\frac{1}{2015!}< 1\)
so sánh
a\(\frac{n}{n+1}\)và \(\frac{n+2}{n+3}\)
b \(\frac{n}{n+3}\)và \(\frac{n-1}{n+4}\)
c \(\frac{n}{2n+1}\)và\(\frac{3n+1}{6n+3}\)
a). n/n+1 < n+2/n+3
b). n/n+3 > n−1/n+4
c). n/2n+1 < 3n+1/6n+3
k mk nha
\(\frac{n}{n+1}< 1\Rightarrow\frac{n}{n+1}< \frac{n+2}{n+1+2}=\frac{n+2}{n+3}\)
=>n/n+1<n+2/n+3
vậy........
b)\(\frac{n}{n+3}>\frac{n}{n+4}>\frac{n-1}{n+4}\Rightarrow\frac{n}{n+3}>\frac{n}{n+4}\)
vậy.....
c)\(\frac{n}{2n+1}=\frac{3n}{6n+3}< \frac{3n+1}{6n+3}\)
vậy.......
a) \(\frac{n}{n+1}=1-\frac{1}{n+1};\frac{n+2}{n+3}=1-\frac{1}{n+3}\)
Vì \(\frac{1}{n+1}>\frac{1}{n+3}\)=) \(1-\frac{1}{n+1}< 1-\frac{1}{n+3}\)
=) \(\frac{n}{n+1}< \frac{n+2}{n+3}\)
b) Áp dụng tính chất : Nếu \(\frac{a}{b}< 1\)=) \(\frac{a}{b}< \frac{a+m}{b+m}\)
Ta có : \(\frac{n-1}{n+4}< 1\)=) \(\frac{n-1}{n+4}< \frac{n-1+1}{n+4+1}=\frac{n}{n+5}< \frac{n}{n+3}\)
=) \(\frac{n-1}{n+4}< \frac{n}{n+3}\)
So sánh các phân số sau ( bằng cách hợp lí)
g) \(\frac{n}{n+3}\)Và \(\frac{n+1}{n+2}\)
h) \(\frac{n+1}{n+2}\)và \(\frac{n+3}{n+4}\)
h) Ta có: \(\frac{n+1}{n+2}=1-\frac{1}{n+2}\)
\(\frac{n+3}{n+4}=\frac{1}{n+4}\)
Vì \(n+2< n+4\)\(\Rightarrow\frac{1}{n+2}>\frac{1}{n+4}\)
\(\Rightarrow1-\frac{1}{n+2}< 1-\frac{1}{n+4}\)\(\Rightarrow\frac{n+1}{n+2}< \frac{n+3}{n+4}\)
So sánh ( bằng cách nhanh nhất)
a)\(\frac{87}{39}và\frac{2015}{2017}\)
b)\(\frac{n}{n+1}và\frac{n+1}{n+3}\)
c) \(\frac{n}{n+3}va\frac{n-1}{n+4}\)
a) Vì \(\frac{87}{39}>1\)
\(\frac{2015}{2017}< 1\)
\(\Rightarrow\frac{87}{39}>\frac{2015}{2017}\)
\(\frac{n}{n+1}\)và \(\frac{n+1}{n+3}\)
\(\Rightarrow\frac{n}{n+1}=\frac{n\cdot\left(n+3\right)}{\left(n+1\right)\left(n+3\right)}\)
\(\Rightarrow\frac{n+1}{n+3}=\frac{\left(n+1\right)^2}{\left(n+3\right)\left(n+1\right)}\)
\(\Rightarrow n\cdot\left(n+3\right)=n^2+3n\)
\(\Rightarrow\left(n+1\right)^2=n^2+2n+1\)
Dấu bằng chỉ xảy ra khi n = 1
Còn với mọi trường hợp n > 1 thì
\(\frac{n}{n+1}>\frac{n+1}{n+3};n^2+3n>n^2+2n+1\)
\(\frac{n}{n+3}\)và \(\frac{n-1}{n+4}\)
\(\Rightarrow\frac{n}{n+3}=\frac{n\cdot\left(n+4\right)}{\left(n+3\right)\left(n+4\right)}\)
\(\Rightarrow n\cdot\left(n+4\right)=n^2+4n\)
\(\Rightarrow\left(n-1\right)\left(n+3\right)=n^2+2n-3\)
\(\Rightarrow n^2+4n>n^2+2n+3\)
\(\Rightarrow\frac{n}{n+3}>\frac{n-1}{n+4}\)
so sánh hai phân số (biết n là số tự nhiên)
a \(\frac{n+1}{n+2}\)và \(\frac{n+3}{n+4}\)
b \(n+3\)\(và\)\(\frac{n+1}{n-4}\)
Ta có : \(\frac{n+1}{n+2}=1-\frac{1}{n+2}\)
\(\frac{n+3}{n+4}=1-\frac{1}{n+4}\)
Mà \(\frac{1}{n+2}>\frac{1}{n+4}\)
Nne : \(\frac{n+1}{n+2}< \frac{n+3}{n+4}\)
Với mọi \(n\in N,n\ge2\)
So sánh :
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)với 1
So sánh các phân số sau :
a) \(\frac{n}{n+5}và\frac{n+9}{n+14}\)
b) \(\frac{n+1}{n+2}và\frac{n+3}{n+4}\)
c) \(\frac{n+9}{n}va\frac{n+11}{2}\)
d) \(\frac{n+12}{n+4}va\frac{n}{n-4}\)
AI NHANH NHẤT MÌNH TÍCH CHO!!!!!!!!!!