Cho cot α =2. Tính giá trị A= sin2α +1 phần 2sin2α+3cos2α
Chứng minh giá trị các biểu thức sau không phụ thuộc vào giá trị
của các góc nhọn α.
a) A = cos4α + 2cos2α . sin2α + sin4a
b) B = sin4α + cos2α . sin2α + cos2α
c) C = 2(sin α - cos α )2 - (sin α + cos α )2 + 6sin α . cos α
d) D = (tan α - cot α )2 - (tan α + cot α )2
e) E = 4 cos2 α + (sin α - cos α)2 + (sin α+ cosα)2 + 2(sin2 α -cos2 α)
f) F = \(\dfrac{1}{1+sin\text{α}}\)+\(\dfrac{1}{1-sin\text{α}}\)-2 tan2α
Cho góc α thỏa mãn cos α = 3 5 và - π < α < 0 A = sin 2 α - cos 2 α . Tính giá trị biểu thức . A = sin 2 α - cos 2 α
A. - 26 25
B. - 13 25
C. 3 25
D. - 17 25
cho tam giác ABC vuông tại A, AB<AC, góc C=α<45o, đường trung tuyến AM, đường cao AH, MA=MB=MC=a. c/m:
a) Sin2α=2sinα.cosα
b) 1+cos2α=2cos2α
c)1-cos2α=2sin2α
Cho góc α thỏa mãn π < α < 3 π 2 và tan α = 2 : Tính giá trị của biểu thức A = sin 2 α + cos α + π 2
A. 4 + 2 5 10
B. 4 + 5 5 5
C. 4 + 2 5 5
D. 2 + 5 5
Cho α là góc thỏa mãn sin α = 1 4 .Tính giá trị của biểu thức A = ( sin 4 α + 2 sin 2 α ) cos α
A. 255 128
B. 225 182
C. 255 182
D. 225 128
Cho góc α thỏa mãn: cos α = 3 5 v à - π < α < 0 .Tính giá trị biểu thức: A = sin 2 α - cos 2 α
A. - 26 25
B. - 13 25
C. 3 25
D. - 17 25
Cho tam giác ABC, AB=AC=1, ^A=2α(0<α<45). Vẽ đường cao AD, BEa) Các tỉ số lượng giác sinα,cosα,sin2α,cos2αđược biểu diễn bởi những đường thẳng nào?b) Chứng minh: tam giác ADC đồng dạng với tam giác BEC, từ đó suy ra các hệ thức:sin2α=2sinαcosαcos2α=1−2sin2α=2cos2α−1=cos2α−sin2α
Cho góc α thỏa mãn điều kiện π < α < 3 π 2 và tan α = 2
Tính giá trị của biểu thức M = sin 2 α + sin α + π 2 + sin 5 π 2 - 2 α
Cho góc α thỏa mãn điều kiện
π < α < 3 π 2 và tanα = 2
Tính giá trị của biểu thức M= sin 2 α + sin α + π 2 + sin 5 π 2 - 2 α