Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn thảo hân
Xem chi tiết
Nguyễn Văn Lâm ( ✎﹏IDΣΛ...
12 tháng 8 2021 lúc 21:40

\(2,\)

A B H C D

Kẻ BH vuông góc với CD tại H

Xét hai tam giác BDH và BCH:

+) BH là cạnh chung

+) Góc BHD = góc BHC = 90 độ

+) DH = CH 

=> Tam giác BDH = tam giác HCH (c.g.c)

=> BD = BC

Khác: DC = BC

=> BC = CD = DB => Tam giác BCD đều => Góc C = 60 độ

Mà: AB // CD => Góc B + góc C = 180 độ => Góc B = góc ABC = 180 độ - 60 độ = 120 độ

Khách vãng lai đã xóa
Bùng nổ Saiya
Xem chi tiết
Lan Anh Nguyễn
Xem chi tiết
Võ Kiều Oanh
Xem chi tiết
Ran Mori
Xem chi tiết
Không Tên
19 tháng 8 2018 lúc 23:25

Tam giác ACD vuông tại C có góc CAD = góc ABC = 60 độ   (cùng phụ với CAB)

=>  AC = 2AD

Áp dụng Pytago ta có:

AC2 = AD2 + DC2

<=>  4AD2 = AD2 + 900

<=>  AD2 = 300

<=> \(AD=10\sqrt{3}\)

Kẻ CH vuông với AB

AHCD là hình chữ nhật  (có góc A=D=H = 900)

=>  AH = CD = 30;   CH = AD = \(10\sqrt{3}\)

Tgiac ACB vuông tại C, ta có:

CH2 =HA.HB

=>  \(HB=\frac{CH^2}{HA}=10\)

=>   AB = AH + HB = 40

\(S_{ABCD}=\frac{1}{2}CH.\left(AB+CD\right)=350\sqrt{3}\)

SAD
Xem chi tiết
Không Tên
19 tháng 8 2018 lúc 23:24

Tam giác ACD vuông tại C có góc CAD = góc ABC = 60 độ   (cùng phụ với CAB)

=>  AC = 2AD

Áp dụng Pytago ta có:

AC2 = AD2 + DC2

<=>  4AD2 = AD2 + 900

<=>  AD2 = 300

<=> \(AD=10\sqrt{3}\)

Kẻ CH vuông với AB

AHCD là hình chữ nhật  (có góc A=D=H = 900)

=>  AH = CD = 30;   CH = AD = \(10\sqrt{3}\)

Tgiac ACB vuông tại C, ta có:

CH2 =HA.HB

=>  \(HB=\frac{CH^2}{HA}=10\)

=>   AB = AH + HB = 40

\(S_{ABCD}=\frac{1}{2}CH.\left(AB+CD\right)=350\sqrt{3}\)

WTF
Xem chi tiết
Không Tên
19 tháng 8 2018 lúc 23:25

Tam giác ACD vuông tại C có góc CAD = góc ABC = 60 độ   (cùng phụ với CAB)

=>  AC = 2AD

Áp dụng Pytago ta có:

AC2 = AD2 + DC2

<=>  4AD2 = AD2 + 900

<=>  AD2 = 300

<=> \(AD=10\sqrt{3}\)

Kẻ CH vuông với AB

AHCD là hình chữ nhật  (có góc A=D=H = 900)

=>  AH = CD = 30;   CH = AD = \(10\sqrt{3}\)

Tgiac ACB vuông tại C, ta có:

CH2 =HA.HB

=>  \(HB=\frac{CH^2}{HA}=10\)

=>   AB = AH + HB = 40

\(S_{ABCD}=\frac{1}{2}CH.\left(AB+CD\right)=350\sqrt{3}\)

THANG CHU DUC
Xem chi tiết
Cao Thanh Nga
Xem chi tiết
Pham Van Hung
31 tháng 7 2018 lúc 14:20

a, Bạn chứng minh được \(\Delta ABD\infty\Delta BDC\left(g.g\right)\)

\(\Rightarrow\frac{AB}{BD}=\frac{BD}{DC}\Rightarrow AB.DC=BD^2\Rightarrow2.8=BD^2\Rightarrow BD^2=16\Rightarrow BD=4\left(cm\right)\)(vì AB = 2cm , CD = 8 cm)

Ta có: \(\frac{BD}{CD}=\frac{4}{8}=\frac{1}{2}\)

Xét tam giác BDC vuông tại B có: BD = 1/2 CD nên \(\widehat{C}=30^0\)

ABCD là hình thang vuông(gt) \(\Rightarrow AB//CD\)

 \(\Rightarrow\widehat{ABC}+\widehat{C}=180^0\) ( 2 góc trong cùng phía)

\(\Rightarrow\widehat{ABC}+30^0=180^0\) (do góc C = 30 độ)

\(\Rightarrow\widehat{ABC}=150^0\)

b, Áp dụng định lí Pitago vào tam giác ABD vuông tại A, tính được: \(AD=\sqrt{12}\left(cm\right)\)

Diện tích hình thang ABCD là: 

                         \(\frac{\left(2+8\right).\sqrt{12}}{2}=5\sqrt{12}\left(cm^2\right)\) 

Chúc bạn học tốt.

Bùi Xuân Nam
1 tháng 5 2020 lúc 8:17

thang cho dung hoi nua

Khách vãng lai đã xóa
Trần Hoàng Thiên Bảo
Xem chi tiết
Nguyễn Bảo Trâm
24 tháng 9 2015 lúc 19:59

ta có: hình thang ABCD là hình thang vuông

kẻ BH vuông góc với DC=> ABHD là hình vuông =>BH=AD=4cm

Ta có:AB=DC=4cm=>hc=8-4=4cm

dùng máy tính bỏ túi để tính C=SHIFT + TAN =45=góc CBH

=> góc C=45+90=135