CMR: tồn tại vô hạn các số nguyên tố có dạng 3x-1
chứng minh rằng tồn tại vô số các số nguyên tố có dạng 4k+3( chứng minh bằng phản chứng)
Giả sử số các số nguyên tố dạng 4k + 3 là hữu hạn.
Gọi đó là p1, p2, ..., pk.
Xét A = 4*p1*p2*...*pk - 1
A có dạng 4k + 3, vậy theo bổ đề A có ít nhất 1 ước nguyên tố dạng 4k + 3.
Dễ thấy là A không chia hết cho p1, p2, ..., pk, tức không chia hết cho bất cứ số nguyên tố nào có dạng 4k + 3, mâu thuẫn.
Vậy có vô hạn số nguyên tố dạng 4k + 3
**** nhe
CMR ko tồn tại số nguyên tố p sao cho 2^p+3^p có dạng k^n, với k,n là các số nguyên dương lớn hơn 1
Có tồn tại vô hạn số nguyên dương \(n\) sao cho:
\(n^{2} + 1\)
là một số nguyên tố không?
ai trả lời sớm nhất mik tick đúng cho
Không có bằng chứng nào cho thấy có vô hạn số nguyên dương
n sao cho n mũ 2 + 1 là số nguyên tố.
Do đó, câu trả lời là không.
Cmr với mọi số nguyên tố p lớn hơn 5 luôn tồn tại số có dạng 111...1 chia hết cho p
Cmr với mọi số nguyên tố p lớn hơn 5 luôn tồn tại số có dạng 111...1 chia hết cho p
giải đi, mình cũng đang cần
cmr tập hợp các số nguyên tố là 1 tập hợp vô hạn
bn vào đây xem nhé Chứng minh rằng" có vô số số nguyên tố>? | Yahoo Hỏi & Đáp
Giải:
Giả sử số số nguyên tố là hữu hạn thì ta xét số A bằng tích của tất cả các số nguyên tố đó cộng 1. Rõ ràng A nằm ngoài tập hợp các số nguyên tố (vì lớn hơn tất cả các số nguyên tố) nên nó không phải là số nguyên tố. Gọi B là ước số nhỏ nhất của A. Đến lượt B cũng không phải là số nguyên tố vì ta có thể thấy A không chia hết cho số nguyên tố nào (trong tập hợp hữu hạn các số nguyên tố, như đã giả thiết). Vậy B phải chia hết cho một số C. Số C này, dĩ nhiên là ước số của A, và nhỏ hơn B, mâu thuẫn. Tóm lại số số nguyên tố phải là vô hạn.
cmr bao giờ cũng tồn tại 1 số có dạng 11111..1 chia hết cho p đk p là số nguyên tố >5
cmr tồn tại vô số số nguyên dương a sao cho số z = n^4 +a không phải là số nguyên tố
cmr : có vô số số nguyên tố có dạng 3n-1