Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hà Anh
Xem chi tiết
Tô Hoài Dung
Xem chi tiết
nguyễn anh thơ
Xem chi tiết
shitbo
15 tháng 10 2019 lúc 19:59

\(\sqrt{9x-9}+1=13\Leftrightarrow3\sqrt{x-1}=12\Leftrightarrow\sqrt{x-1}=4\Leftrightarrow x-1=16\Leftrightarrow x=17\)

\(2.\text{bạn tự tìm đk}\)

\(A=\left(\frac{2}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}-\frac{2\sqrt{x}-2}{\sqrt{x}-1}\right)\)

\(A=\frac{2\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\left(\sqrt{x}-2\right)=\sqrt{x}\left(\sqrt{x}-2\right)< 0\Leftrightarrow x-2\sqrt{x}< 0\Leftrightarrow\left(\sqrt{x}-1\right)^2< 1\Leftrightarrow-1< \sqrt{x}-1< 1\)
\(\Leftrightarrow0< x< 4\)

Nguyễn Công Tỉnh
15 tháng 10 2019 lúc 20:05

Câu 1:

\(\sqrt{9x-9}+1=13\)\(ĐKXĐ:x\ge1\)

\(\Leftrightarrow\sqrt{9\left(x-1\right)}=12\)

\(\Leftrightarrow3\sqrt{x-1}=12\)

\(\Leftrightarrow\sqrt{x-1}=4\)

\(\Leftrightarrow x-1=16\)

\(\Leftrightarrow x=17\)(tm ĐKXĐ)

Câu 2 

ĐKXĐ: \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)

\(A=\left(\frac{2}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{x-\sqrt{x}}\right):\left(\frac{x+\sqrt{x}}{\sqrt{x}+1}-\frac{2\sqrt{x}-2}{\sqrt{x}-1}\right)\)

\(=\left(\frac{2}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}-\frac{2\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right)\)

\(=\left(\frac{2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\sqrt{x}-2\right)\)

\(=\left(\frac{2\sqrt{x}-\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right).\frac{1}{\sqrt{x}-2}\)

\(=\left(\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right).\frac{1}{\sqrt{x}-2}\)

\(=\frac{1}{x-2\sqrt{x}}\)

b Để A có giá trị âm \(\Rightarrow\frac{1}{x-2\sqrt{x}}< 0\)

vì 1>0

\(\Rightarrow x-2\sqrt{x}< 0\)

\(\Leftrightarrow0< \sqrt{x}< 2\)

\(\Leftrightarrow0< x< 4\)

kết hợp ĐKXĐ: \(\Rightarrow1< x< 4\)

Đỗ Thị Tú Uyên
Xem chi tiết
Trần Ngyễn Yến Vy
Xem chi tiết
Nobi Nobita
11 tháng 10 2020 lúc 20:50

a) \(ĐKXĐ:\hept{\begin{cases}x>0\\x\ne4\\x\ne9\end{cases}}\)

\(P=\left(\frac{\sqrt{x}-3}{2-\sqrt{x}}+\frac{\sqrt{x}+2}{3+\sqrt{x}}-\frac{9-x}{x+\sqrt{x}-6}\right):\left(1-\frac{3\sqrt{x}-9}{x-9}\right)\)

\(=\left[\frac{-\left(\sqrt{x}-3\right)}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{\sqrt{x}+3}+\frac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right]:\left[1-\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right]\)

\(=\left[\frac{-\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right]:\left(1-\frac{3}{\sqrt{x}+3}\right)\)

\(=\left[\frac{-x+9+x-4+x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right]:\left(\frac{\sqrt{x}+3-3}{\sqrt{x}+3}\right)\)

\(=\frac{x-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}:\frac{\sqrt{x}}{\sqrt{x}+3}\)

\(=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}.\frac{\sqrt{x}+3}{\sqrt{x}}=\frac{\sqrt{x}+2}{\sqrt{x}}\)

b) Ta có: \(P=\frac{\sqrt{x}+2}{\sqrt{x}}=1+\frac{2}{\sqrt{x}}\)

Vì \(x\inℤ\)\(\Rightarrow\)Để P nguyên thì \(\frac{2}{\sqrt{x}}\inℤ\)

\(\Rightarrow2⋮\sqrt{x}\)\(\Rightarrow\sqrt{x}\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

Vì \(\sqrt{x}>0\)\(\Rightarrow\sqrt{x}\in\left\{1;2\right\}\)

\(\Rightarrow x\in\left\{1;4\right\}\)

So sánh với ĐKXĐ ta thấy \(x=1\)thỏa mãn 

\(\Rightarrow P=\frac{\sqrt{1}+2}{\sqrt{1}}=\frac{1+2}{1}=3\)

Vậy \(x=1\)khi đó \(P=3\)

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
11 tháng 10 2020 lúc 20:52

\(P=\left(\frac{\sqrt{x}-3}{2-\sqrt{x}}+\frac{\sqrt{x}+2}{3+\sqrt{x}}-\frac{9-x}{x+\sqrt{x}-6}\right)\div\left(1-\frac{3\sqrt{x}-9}{x-9}\right)\)

a) ĐK : \(\hept{\begin{cases}x\ge0\\x\ne4\\x\ne9\end{cases}}\)

\(=\left(\frac{3-\sqrt{x}}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{\sqrt{x}+3}-\frac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\div\left(1-\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right)\)

\(=\left(\frac{\left(3-\sqrt{x}\right)\left(x+\sqrt{3}\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\frac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\div\left(1-\frac{3}{\sqrt{x}+3}\right)\)

\(=\left(\frac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{x-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\frac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\div\left(\frac{\sqrt{x}+3}{\sqrt{x}+3}-\frac{3}{\sqrt{x}+3}\right)\)

\(=\left(\frac{9-x+x-4-9+x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\div\left(\frac{\sqrt{x}}{\sqrt{x}+3}\right)\)

\(=\frac{x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\times\frac{\sqrt{x}+3}{\sqrt{x}}\)

\(=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}+2}{\sqrt{x}}\)

b) Ta có : \(\frac{\sqrt{x}+2}{\sqrt{x}}=1+\frac{2}{\sqrt{x}}\)

Để P nguyên => \(\frac{2}{\sqrt{x}}\)nguyên

=> \(2⋮\sqrt{x}\)

=> \(\sqrt{x}\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

=> \(\sqrt{x}\in\left\{1;2\right\}\)( vì x ≥ 0 )

=> \(x\in\left\{1;4\right\}\Rightarrow x=1\)( vì x ≠ 4 )

Vậy với x = 1 thì P có giá trị nguyên

Khách vãng lai đã xóa
tuấn lê
Xem chi tiết
Nguyễn Quốc Huy
Xem chi tiết
Minh Nguyen
4 tháng 4 2020 lúc 18:03

Bài 1 :

a) \(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne4\\x\ne9\end{cases}}\)

\(A=\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)

\(\Leftrightarrow A=\frac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}+1}:\frac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(\Leftrightarrow A=\frac{1}{\sqrt{x}+1}:\frac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(\Leftrightarrow A=\frac{1}{\sqrt{x}+1}:\frac{1}{\sqrt{x}-2}\)

\(\Leftrightarrow A=\frac{\sqrt{x}-2}{\sqrt{x}+1}\)

b) Để \(A< -1\)

\(\Leftrightarrow\frac{\sqrt{x}-2}{\sqrt{x}+1}< -1\)

\(\Leftrightarrow\sqrt{x}-2< -\sqrt{x}-1\)

\(\Leftrightarrow2\sqrt{x}< 1\)

\(\Leftrightarrow\sqrt{x}< \frac{1}{2}\)

\(\Leftrightarrow x< \frac{1}{4}\)

Vậy để \(A< -1\Leftrightarrow x< \frac{1}{4}\)

Khách vãng lai đã xóa
nguyen thao
Xem chi tiết
con bạn thân
Xem chi tiết