Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
aelnq
Xem chi tiết
Lê Nguyễn Hoàng Mỹ Đình
Xem chi tiết
oOo RoNaLdO oOo
22 tháng 3 2016 lúc 20:26

Hi SVĐ Mỹ Đình

Oo Bản tình ca ác quỷ oO
22 tháng 3 2016 lúc 20:29

<=> abcabc = abcx(1000+1) = abc x 1001

ta có: ax bcd x abc = abcabc

<=> a x bcd x abc = abc x 1001

<=> a x bcd = 1001

đây là tích giữa số có 1 chữ số và số có 3 chữ số nên ta tìm được a = 7 ( vì 1-> 9 chỉ có 1001 mới chia hết cho 7) => bcd = 143

vậy a = 7 ; b = 1 ; c = 4 ; d = 3

vậy abcd = 7143

Tao Không Tên
22 tháng 3 2016 lúc 20:37

a x bcd x abc = abcabc

Ta có: abc x 1001 = abcabc, mà abc x a x bcd = abcabc 

=> a x bcd = 1001 => a thuộc Ư(1001) = {1;7;11;...}

a là số 1 chữ số nên a là 1 hoặc 7

TH1: a = 1 => bcd = 1001 (loại)

Th2: a = 7 => bcd = 143 (đúng)

Vậy abcd = 7143

hotboy2002
Xem chi tiết
aelnq
Xem chi tiết
nguyên trong nhat
Xem chi tiết
emily
Xem chi tiết
Nguyễn Thái Hà
Xem chi tiết
Penta Lê
Xem chi tiết
Hoàng Đình Đại
Xem chi tiết
tth_new
20 tháng 6 2019 lúc 15:27

\(N=3\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)+\left(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\right)\)

\(\ge\frac{27}{2\left(a+b+c\right)}+\frac{\left(a+b+c\right)}{2}=6^{\left(đpcm\right)}\)

Dấu "=" xảy ra khi a = b =c = 1

Nguyễn Thị Ngọc Thơ
20 tháng 6 2019 lúc 15:31

Ta có đánh giá \(\frac{3+a^2}{3-a}\ge2a\) \(\forall a:0< a< 3\)

Thật vật, biến đổi tương đương: \(\Leftrightarrow3+a^2\ge2a\left(3-a\right)\Leftrightarrow3\left(a-1\right)^2\ge0\) (luôn đúng)

Tương tự: \(\frac{3+b^2}{3-b}\ge2b\) ; \(\frac{3+c^2}{3-c}\ge2c\)

Cộng vế với vế: \(N\ge2\left(a+b+c\right)=6\)

\("="\Leftrightarrow a=b=c=1\)

zZz Cool Kid_new zZz
20 tháng 6 2019 lúc 15:32

Ta có:

\(\frac{3+a^2}{b+c}=\frac{a^2+a+b+c}{b+c}=\frac{a^2+a}{b+c}+1=\frac{a^2}{b+c}+\frac{a}{b+c}+1\)

Tương tự,ta có:

\(\frac{3+b^2}{a+c}=\frac{b^2}{a+c}+\frac{b}{a+c}+1\)

\(\frac{3+c^2}{a+b}=\frac{c^2}{a+b}+\frac{c}{a+b}+1\)

Cộng vế theo vế của các đẳng thức,ta có:

\(N=3+\left(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\right)+\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{b+a}\right)\)

Áp dụng BĐT Cauchy-schwarz và BĐT Nesbitt,ta có:

\(N\ge3+\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}+\frac{3}{2}\)

\(=6\left(đpcm\right)\)

Dấu "=" xảy ra khi \(a=b=c=1\)