\(\frac{2}{3}X-0.4=\frac{1}{5}\)
Giúp t vs:
\(\frac{9x-0.7}{4}-\frac{5x-1.5}{7}=\frac{7x-1.1}{6}-\frac{5\cdot\left(0.4-2x\right)}{6}\)
\(\frac{2x-\frac{4-3x}{5}}{15}=\frac{7x-\frac{x-3}{2}}{5}-x+1\)
\(\frac{9x-0,7}{4}-\frac{5x-1,5}{7}=\frac{7x-1,1}{6}-\frac{5\left(0,4-2x\right)}{6}\)
\(\Leftrightarrow\frac{\left(9x-0,7\right)\cdot7}{4\cdot7}-\frac{\left(5x-1,5\right)\cdot4}{7\cdot4}=\frac{7x-1,1-2+10x}{6}\)
\(\Leftrightarrow\frac{63x-4,9-20x+6}{28}=\frac{7x-1,1-2+10x}{6}\)
\(\Leftrightarrow\left(63x-4,9-20x+6\right)\cdot6=28\left(7x-1,1-2+10x\right)\)
\(\Leftrightarrow378x-120x+6,6=196x-86,8+280x\)
\(\Leftrightarrow378x-120x-196x-280x=-86,8-6,6\)
\(\Leftrightarrow-218x=-93,4\)
\(\Leftrightarrow x=\frac{467}{1090}\)
Tìm x,y,z khi :
a, \(\frac{x}{2}=\frac{y}{3}\) , \(\frac{y}{4}=\frac{z}{5}\) và x - y- z= 28
b, \(\frac{4-z}{1}=\frac{y+z}{2}=\frac{x+y}{3}=\frac{y+8}{5}\)
c, \(\left(x-\frac{1}{5}\right)^{2004}+\left(y+0.4\right)^{100}+\left(z-3\right)^{678}=0\)
A) ta có \(\frac{X}{2}=\frac{Y}{3}\)=>\(\frac{X}{8}=\frac{Y}{12}\)(1)
\(\frac{Y}{4}=\frac{Z}{5}\)=>\(\frac{Y}{12}=\frac{Z}{15}\)(2)
Từ (1)và (2)=>\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\) và x-y-z=28
đến đây tự làm
c) \(\left(x-\frac{1}{5}\right)^{2004}+\left(y+0,4\right)^{100}+\left(z-3\right)^{678}=0\)
\(\Rightarrow\left(x-\frac{1}{5}\right)^{2004}=0\) và \(\left(y+0,4\right)^{100}=0\) và \(\left(z-3\right)^{678}=0\)
+) \(\left(x-\frac{1}{5}\right)^{2004}=0\Rightarrow x-\frac{1}{5}=0\Rightarrow x=\frac{1}{5}\)
+) \(\left(y+0,4\right)^{100}=0\Rightarrow y+0,4=0\Rightarrow y=-0,4\)
+) \(\left(z-3\right)^{678}=0\Rightarrow z-3=0\Rightarrow z=3\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(\frac{1}{5};-0,4;3\right)\)
Giải các phương trình sau:
a)\(\frac{\left(9x-0.7\right)}{4}-\frac{\left(5x-1.5\right)}{7}=\frac{\left(7x-1.1\right)}{3}-\frac{5\left(0.4-2x\right)}{6}\)
b)\(\frac{3x-1}{x-1}-\frac{2x+5}{x+3}=1-\frac{4}{\left(x-1\right)\left(x+3\right)}\)
c)\(\frac{3}{4\left(x-5\right)}+\frac{15}{50-2x^2}=-\frac{7}{6\left(x+5\right)}\)
d)\(\frac{8x^2}{3\left(1-4x\right)^2}=\frac{2x}{6x-3}-\frac{1+8x}{4+8x}\)
A=\(\left(\frac{0.4-\frac{2}{9}+\frac{2}{11}}{1.4-\frac{7}{9}+\frac{7}{11}}-\frac{\frac{1}{3}-0.25+\frac{1}{5}}{1\frac{1}{6}-0.875+0.7}\right):\left(1^2+2^2+3^2+...+2015^2\right)\)
Trả lời
\(A=\left(\frac{\frac{2}{5}-\frac{2}{9}+\frac{2}{11}}{\frac{7}{5}-\frac{7}{9}+\frac{7}{11}}-\frac{2.\left(\frac{1}{6}-\frac{1}{8}-\frac{1}{10}\right)}{\frac{7}{6}-\frac{7}{8}-\frac{7}{10}}\right):\left(1^2+2^2+...+2015^2\right).\)
\(A=\left(\frac{2}{7}-\frac{2}{7}\right):\left(1^2+2^2+3^2+...+2015^2\right)\)
\(A=0:\left(1^2+2^2+3^2+.....+2015^2\right)\)
A=0
Study well
\(A=...\)
\(=\left(\frac{\frac{2}{5}-\frac{2}{9}+\frac{2}{11}}{\frac{7}{5}-\frac{7}{9}+\frac{7}{11}}-\frac{\frac{1}{3}-\frac{1}{4}+\frac{1}{5}}{\frac{7}{6}-\frac{7}{8}+\frac{7}{10}}\right):\left(1^2+2^2+...+2015^2\right)\)
\(=\left[\frac{2\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{11}\right)}{7\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{11}\right)}-\frac{\frac{1}{3}-\frac{1}{4}+\frac{1}{5}}{\frac{7}{2}\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{5}\right)}\right]:\left(1^2+2^2+...+2015^2\right)\)
\(=\left(\frac{2}{7}-\frac{1}{\frac{7}{2}}\right):\left(1^2+2^2+...+2015^2\right)\)
\(=\left(\frac{2}{7}-\frac{2}{7}\right):\left(1^2+2^2+...+2015^2\right)\)
\(=0:\left(1^2+2^2+...+2015^2\right)=0\)
\(B=2016:\left(\frac{0.4-\frac{2}{9}+\frac{2}{11}}{1.4-\frac{7}{9}+\frac{7}{11}}.\frac{-1\frac{1}{6}+0.875-0.7}{\frac{1}{3}-0.25+\frac{1}{5}}\right)\)
\(B=2016:\left(\frac{0.4-\frac{2}{9}+\frac{2}{11}}{1.4-\frac{7}{9}+\frac{7}{11}}.\frac{-1\frac{1}{6}+0.875-0.7}{\frac{1}{3}-0.25+\frac{1}{5}}\right)\)
<=>\(B=2016:\left(\frac{\frac{2}{5}-\frac{2}{9}+\frac{2}{11}}{\frac{7}{5}-\frac{7}{9}+\frac{7}{11}}.\frac{\frac{-7}{6}+\frac{7}{8}-\frac{7}{10}}{\frac{1}{3}-\frac{1}{4}+\frac{1}{5}}\right)\)
<=>\(B=2016:\left(\frac{2.\left(\frac{1}{5}.\frac{1}{9}.\frac{1}{11}\right)}{5.\left(\frac{1}{5}.\frac{1}{9}.\frac{1}{11}\right)}.\frac{\frac{7}{6}-\frac{7}{8}-\frac{7}{10}}{\frac{2}{6}-\frac{2}{8}-\frac{2}{10}}\right)\)
<=>\(B=2016:\left(\frac{2}{5}.\frac{7.\left(\frac{1}{6}-\frac{1}{8}-\frac{1}{10}\right)}{2.\left(\frac{1}{6}-\frac{1}{8}-\frac{1}{10}\right)}\right)\)
<=>\(B=2016:\left(\frac{2}{5}.\frac{7}{2}\right)\)
<=>\(B=2016:\frac{7}{5}\)
<=>\(B=2016.\frac{5}{7}\)
<=>\(B=1440\)
Vậy B=1440
k cho mink nha
tìm x, y, z khi:
a,cho 3x=y , 5y=4z và 6x+7y+8z = 456
b, \(\frac{4-z}{1}=\frac{y+z}{2}=\frac{x+y}{3}=\frac{y+8}{5}\)
c, ( x - \(\frac{1}{5}\)) ^2004+ ( y+0.4) ^ 100 + ( z-3 )^ 678 = 0
a) \(\frac{x}{1}=\frac{y}{3}=\frac{4z}{15}=\frac{6x+7y+8z}{1.6+3.7+15.2}=\frac{456}{57}=8\)
x=8
y=24
z=30
\(3x=y\)=> \(\frac{x}{1}=\frac{y}{3}\)
hay \(\frac{x}{4}=\frac{y}{12}\)
\(5y=4z\)=> \(\frac{y}{4}=\frac{z}{5}\)
hay \(\frac{y}{12}=\frac{z}{15}\)
suy ra: \(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}\)
đến đây bạn ADTCDTSBN nhé
Ta có: 3x=y⇒x1=y3⇒x4=y123x=y⇒x1=y3⇒x4=y12
5y=4z⇒y4=z5⇒y12=z155y=4z⇒y4=z5⇒y12=z15
⇒x4=y12=z15⇒x4=y12=z15
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x4=y12=z15=6x24=7y84=8z120=6x+7y+8z24+84+120=456228=2x4=y12=z15=6x24=7y84=8z120=6x+7y+8z24+84+120=456/228=2
+) x4=2⇒x=8x4=2⇒x=8
+) y12=2⇒y=24y12=2⇒y=24
+) z15=2⇒z=30z15=2⇒z=30
Vậy bộ số (x;y;z)(x;y;z) là (8;24;30)
\(0.5+\frac{1}{3}+0.4+\frac{5}{7}+\frac{1}{6}-\frac{4}{35}\)
\(0,5+\frac{1}{3}+0,4+\frac{5}{7}+\frac{1}{6}-\frac{4}{35}\)
\(=\left(\frac{1}{2}+\frac{1}{3}+\frac{2}{5}+\frac{1}{6}\right)+\left(\frac{5}{7}-\frac{4}{35}\right)\)
\(=\frac{15+10+12+5}{30}+\frac{25-4}{35}\)
\(=\frac{7}{5}+\frac{3}{5}\)
\(=2\)
Đổi :0,5=1/2;0,4=2/5
Ta có:1/2+1/3+2/5+5/7+1/6-4/35=2
Tính nhanh: \(B=\left(\frac{0.4-\frac{2}{9}+\frac{2}{11}}{1.4-\frac{7}{9}+\frac{7}{11}}-\frac{\frac{1}{3}-0.25+\frac{1}{5}}{1\frac{1}{6}-0.875+0.7}\right):\frac{2014}{2015}\)
Tìm X
a) \(x+\frac{1}{2}=75\%\) b) \(x:1\frac{2}{7}=3,5\)
c)\(0.4.x-\frac{1}{5}.x=\frac{3}{4}\)