A=1:1!3+2:2!3+1:3!5+...+1:(n-2)!n .Chứng minh A bé hơn 1:2 với n lớn hơn hoặc bằng 3
Chứng minh với n thuộc N, n lớn hơn hoặc bằng 2 có 1//2^3 + 1/3^3 +...+ 1/n^3 bé hơn 1/4
Đặt S = \(\frac{1}{2^3}+\frac{1}{3^3}+....+\frac{1}{n^3}\)
\(S<\frac{1}{1.2.3}+\frac{1}{2.3.4}+.....+\frac{1}{\left(n-1\right)n\left(n+1\right)}\)
Tính VP ra là được
1.Với a> hoặc bằng 1,b lớn hơn hoặc bằng 1 chứng minh (1/1+a^2)+ (1/1+b^2) lớn hơn hoặc bằng 2/1+ab
2.Với a > hoặc bằng 1,b lớn hơn hoặc bằng 1,c lớn hơn hoặc bằng 1 chứng minh (1/1+a^2) +(1/1+b^2)+ (1/1+c^2) lớn hơn hoặc bằng 3/1+abc
3.Cho a,b,c >0 và a< hoặc bằng 1, b/2+a < hoặc bằng 2, c/3+b/2+a < hoặc bằng 3.Tìm Min P=1/a +1/b + 1/c
Giusp e với ạ.Cần lắm ạ.
1.Với a> hoặc bằng 1,b lớn hơn hoặc bằng 1 chứng minh (1/1+a^2)+ (1/1+b^2) lớn hơn hoặc bằng 2/1+ab
2.Với a > hoặc bằng 1,b lớn hơn hoặc bằng 1,c lớn hơn hoặc bằng 1 chứng minh (1/1+a^2) +(1/1+b^2)+ (1/1+c^2) lớn hơn hoặc bằng 3/1+abc
3.Cho a,b,c >0 và a< hoặc bằng 1, b/2+a < hoặc bằng 2, c/3+b/2+a < hoặc bằng 3.Tìm Min P=1/a +1/b + 1/c
Giusp e với ạ.Cần lắm ạ.
1)Với x>-3.Chứng minh :2x/3 + 9/(x-3)^2 lớn hơn hoặc bằng 1
2)Cho a lớn hơn hoặc bằng 3,ab lớn hơn hoặc bằng 6;abc lớn hơn hoặc bằng 6.Chứng minh rằng a+b+c lớn hơn hoặc bằng 6
1) Đề sai, thử với x = -2 là thấy không thỏa mãn.
Giả sử cho rằng với đề là x không âm thì áp dụng BĐT Cauchy:
\(A=\)\(\frac{2x}{3}+\frac{9}{\left(x-3\right)^2}=\frac{x-3}{3}+\frac{x-3}{3}+\frac{9}{\left(x-3\right)^2}+2\)
\(A\ge3\sqrt[3]{\frac{\left(x-3\right).\left(x-3\right).9}{3.3.\left(x-3\right)^2}}+2=3+2=5>1\)
Không thể xảy ra dấu đẳng thức.
a) F = 3/1.4 + 3/4.7 + 3/7.10 + ... + 3/n.(n+3) với n thuộc N*
b)M = 1/2 mũ 2 + 1/3 mũ 2 +1/4 mũ 2 +...+ 1/n mũ 2 < 1
c) N = 1/4 mũ 2 + 1/6 mũ 2 + 1/8 mũ 2+...+ 1/2n mũ 2 < 1/4 (với n thuộc N,n lớn hơn hoặc bằng 2)
d) P = 2!/3! + 2!/4! + 2!/5!+ ...+ 2!/n! <2 ( với n thuộc N,n lớn hơn hoặc bằng 2)
nhanh lên nhé các bạn trả lời nhanh và đúng thì mình tích cho
bn cho mình gửi sắp đến thi học kì 2 rồi. đây là những món quà mà bn sẽ nhận đc:
1: áo quần
2: tiền
3: đc nhiều người yêu quý
4: may mắn cả
5: luôn vui vẻ trong cuộc sống
6: đc crush thích thầm
7: học giỏi
8: trở nên xinh đẹp
phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người, sau 3 ngày bn sẽ có những đc điều đó. nếu bn ko gửi tin nhắn này cho 25 người thì bn sẽ luôn gặp xui xẻo, học kì 2 bn sẽ là học sinh yếu và bạn bè xa lánh( lời nguyền sẽ bắt đầu từ khi đọc) ( mình
cũng bị ép);-;
Chứng minh rằng P = 2!/3!+ 2!/4! + 2!/5! + ...+ 2!/n! < 1( n thuộc N và n lớn hơn hoặc bằng 3)
Mình cũng mới học lớp 6 thôi và cũng không giải quyết được bài này, mai phải làm rồi ai biết thì giúp mình với nhé!!!!
Câu 5:Cho a= 1+2+3+...+n và b= 2n+1 (Với n thuộc N, n lớn hơn hoặc bằng 2)
Chứng minh : a và b là 2 số nguyên tố cùng nhau.
Gọi d là ước chung nếu có của cả a và b
=> a chia hết cho d nên 8a cũng chia hết cho d
đồng thời : b chia hết cho d nên b2 cũng chia hết cho d ( b2 )
=> ( b2 - 8.a ) chia hết cho d
mà : a = 1 + 2 + 3 + ... + n = n ( n + 1 ) / 2 = ( n2 + n ) /2
và b2 = ( 2n + 1 )2 = 4n2 + 4n + 1
=> : (b2 - 8a ) = ( 4n2 + 4n +1 ) - ( 4n2 + 4n ) = 1
Vậy : ( 8a - b2 ) chia hết cho d <=> 1 chia hết cho d => d = 1
NÊN ước chung của a và b là 1 nên a và b nguyên tố cùng nhau ( đpcm )
CMR :
a) N = 1/4^2 + 1/6^2 + 1/8^2 + ... + 1/(2n)^2 < 1/4 ( n thuộc N ; n lớn hơn hoặc bằng 2 )
b) P = 2!/3! + 2!/4! + 2!/5! + ... + 2!/n! < 1 ( n thuộc N ; n lớn hơn hoặc bằng 3 )
a) \(N=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)
\(N=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)\)
Đặt A = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)
A < \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(=1-\frac{1}{n}< 1\)( vì n \(\ge\)2 )
\(\Rightarrow N=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< \frac{1}{2^2}.1=\frac{1}{4}\)
Vậy \(N< \frac{1}{4}\)
b) \(P=\frac{2!}{3!}+\frac{2!}{4!}+\frac{2!}{5!}+...+\frac{2!}{n!}\)
\(P=2!\left(\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+...+\frac{1}{n!}\right)\)
\(P< 2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{\left(n-1\right).n}\right)\)
\(P< 2.\left(\frac{1}{2}-\frac{1}{n}\right)=1-\frac{2}{n}< 1\)
Vậy \(P< 1\)
1 a) Chứng minh( x^2+y^2+5)/2 bé hơn hoặc bằng x+2y
b) Cho a, b biết : a+b=1. Chứng minh 1/a+1 + 1/b+1 bé hơn hoặc bằng 4/3
\(a)\)
\(\frac{x^2+y^2+5}{2}\ge x+2y\)
\(\rightarrow\frac{x^2+y^2+5}{2}-x-2y\ge0\)
\(\rightarrow\frac{x^2+y^2-2x-4y+5}{2}\ge0\)
\(\rightarrow\frac{\left(x^2-2x+1\right)+\left(y^2-4y+4\right)}{2}\ge0\)
\(\rightarrow\frac{\left(x-1\right)^2+\left(y-2\right)^2}{2}\ge0\)
\(\rightarrow\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(y-2\right)^2\ge0\end{cases}}\)
\(\rightarrow\left(x-1\right)^2+\left(y-2\right)^2\ge0\)
\(\rightarrow\frac{\left(x-1\right)^2+\left(y-2\right)^2}{2}\ge0\)
b)
Áp dụng bất đẳng thức dạng 1/a + 1/b + 4 / a+b
-> 1/a+1 + 1/b+1 ≥ 4/a+b+1+1
Mà ta có: a+b=1
-> 1/a+1 + 1/b+1 ≥ 4/1+1+1 = 4/3