Cho hình thang ABCD (AB//CD), biết \(\widehat{ADB}=45^o\), AB = 4 cm, BD = 6cm, CD = 9 cm
a) Chứng minh: \(\Delta ABD\) đồng dạng với \(\Delta BDC\)
b) Tính \(\widehat{B}\) của hình thang ABCD
Cho hình thang ABCD (AB//CD), biết \(\widehat{ADB}=45^o\) , AB = 4 cm, BD = 6cm, CD = 9 cm
a) Chứng mình: \(\Delta ABD\sim\Delta BDC\)
b) Tính \(\widehat{B}\) của hình thang ABCD
cho hình thang ABCD (AB//CD) biết góc ADB =45 , AB= 4 cm, BD =6cm , CD= 9cm
a/ chứng minh tam giác ADB đồng dạng với tam giác BDC
b/ tính góc B của hình thang ABCD
Cho hình thang ABCD(AB//CD),góc ADB=45o,AB=4cm,BD=6cm,9cm.
a,Chứng minh tam giác ABD đồng dạng với tam giác BDC
b,Tính góc B của hình thang ABCD
Cho hình thang ABCD \(\left(AB//CD\right)\), biết \(\widehat{ADB}=45^o,AB=4cm,BD=6cm,CD=9cm\)
a) Chứng minh: \(\Delta ABC\sim\Delta BDC\)
b) Tính \(\widehat{B}\) của hình thang ABCD
Cho hình thang ABCD có AB//CD biết góc ADB = 45 độ, AB=4; BD=6; CD=9
a, Chứng minh Tam giác ADB đồng dạng với tam giác BDC
b, Tính góc B của hình thang ABCD
a, Ta có AB/BD=4/6=2/3
BD/CD=6/9=2/3
suy ra AB/BD=BD/CD
Xét tam giác ABD và tam giác BDC có
góc ABD= góc BDC(so le trong, AB song song với CD)
AB/BD=BD/CD(cmt)
suy ra tam giác ABD đồng dạng với tam giác BDC(c.g.c)
b tam giác ABD đồng dạng với tam giác BDC suy ra góc ADB= góc BCD=45 độ
ta có góc BCD+ góc B=180 đọ
45+B=180
góc B=135 độ(đpcm)
Bài 1: Cho hình thang ABCD(AB//CD).Biết AB =2,5cm; AD =3,5cm; BD =5cm; và góc DAB= DBC.
a) Chứng minh hai tam giác ADB và BCD đồng dạng.
b) Tính độ dài các cạnh BC và CD.
c) Tính tỉ số diện tích hai tam giác ADB và BCD.
Bài 2:Cho hình thang ABCD(AB//CD) và AB<CD.Đường chéo BD vuông góc với cạnh bên BC.Vẽ đường cao BH.
a) Chứng minh hai tam giác BDC và HBC đồng dạng.
b) Cho BC= 15cm; DC= 25cm. Tính HC và HD?
c) Tính diện tích hình thang ABCD?
Bài 3: Cho tam giác ABC và các đường cao BD,CE.
a) Chứng minh: \(\Delta ABD\)đồng dạng với \(\Delta ACE\)
b) Tính \(\widehat{AED}\)biết \(\widehat{ACB}\)=480
Giải giúp mik với ạ
a) Xét 2 tam giác ADB và BCD có:
góc DAB = góc DBC (gt)
góc ABD = góc BDC ( so le trong )
nên tam giác ADB đồng dạng với tam giác BDC.(1)
b) Từ (1) ta được AB/BC = DB/CD = AB/BD
hay ta có; AD/BC = AB/BD <==> 3,5/BC = 2,5/5
==> BC= 3,5*5/2,5 = 7 (cm)
ta cũng có: DB/CD = AB/BD <==> 5/CD = 2,5/5
==> CD = 5*5/2,5 =10 (cm)
c) Từ (1) ta được;
AD/BC = DB/CD = AB/BD hay 3.5/7 = 5/10 = 2,5/5 = 1/2 .
ta nói tam giác ADB đồng giạc với tam giác BCD theo tỉ số đồng dạng là 1/2
mà tỉ số diện tích bằng bình phương tỉ số động dạng
do đó S ADB/ S BCD = (1/2)^2 = 1/4
1/ cho hình thang abcd có 2 đáy ab và cd, ab=4cm, cd=9cm, bd=6cm.
a/ cm tam giác abd đồng dạng vs tam giác bdc
b/ biết góc adb=45 độ. tính abc
a) Ta có:
\(\frac{AB}{BD}=\frac{4}{6}=\frac{2}{3}\); \(\frac{BD}{DC}=\frac{6}{9}=\frac{2}{3}\).
\(\Rightarrow\frac{AB}{BD}=\frac{BD}{DC}=\frac{2}{3}\).
Xét \(\Delta ABD\)và \(\Delta BDC\)có:
\(\widehat{ABD}=\widehat{BDC}\)(vì \(AB//CD\)).
\(\frac{AB}{BD}=\frac{BD}{DC}\)(chứng minh trên).
\(\Rightarrow\Delta ABD~\Delta BDC\left(c.g.c\right)\)(điều phải chứng minh).
b) \(\Delta ABD~\Delta BDC\)(theo câu a)).
\(\Rightarrow\widehat{ADB}=\widehat{BCD}\)(2 góc tương ứng).
Mà \(\widehat{ADB}=45^0\).
\(\Rightarrow\widehat{BCD}=45^0\).
Vì \(AB//CD\)\(\Rightarrow\widehat{ABC}+\widehat{BDC}=180^0\)(2 góc ở vị trí trong cùng phía).
\(\Rightarrow\widehat{ABC}+45^0=180^0\)(thay số).
\(\Rightarrow\widehat{ABC}=180^0-45^0=135^0\).
Vậy \(\widehat{ABC}=135^0\).
Cho hình thang ABCD (AB//CD) có AB =2,5cm;AD=3,5 cm;BD=5cm và\(\widehat{DAB}=\widehat{DBC}\)
a)CM:\(\Delta ADB\infty\Delta BCD\)
b)tính độ dài CD
\(\infty\):dấu đồng dạng