Chứng tỏ rằng tích của 4 số tự nhiên liên tiếp bao giờ cũng chia hết cho 4
Chứng tỏ rằng tích của 4 số tự nhiên liên tiếp bao giờ cũng chia hết cho 4.
Bốn số tự nhiên liên tiếp có dạng: m ; m + 1 ; m + 2 ; m + 3
Nếu m chia hết cho 4 thì tích m x (m + 1 ) x (m + 2) x (m + 3) chia hết cho 4
Nếu m chia cho 4 dư 1 thì (m + 3) chia hết cho 4 do đó tích 4 số trên chia hết cho 4
Nếu m chia cho 4 dư 2 thì (m + 2) chia hết cho 4 do đó tích 4 số trên chia hết cho 4
Nếu m chia cho 4 dư 3 thì (m + 1) chia hết cho 4 do đó tích 4 số trên chia hết cho 4
Vậy tích của 4 số tự nhiên liên tiếp luôn chia hết cho 4
Chứng tỏ rằng tích của 4 số tự nhiên liên tiếp bao giờ cũng chia hết cho 4
trong 4 số tự nhiên liên tiếp bao giờ cũng có số chia hết cho 4 mà số chia hết cho 4 nhân với số nào cũng chia hết cho 4 nên tích của 4 số tự nhiên liên tiếp cũng bao giờ chia hết cho 4
****Hong Hanh Tran
chứng tỏ rằng tích của 4 số tự nhiên liên tiếp bao giờ cũng chia hết cho 4
Chứng tỏ rằng tích của 4 số tự nhiên liên tiếp bao giờ cũng chia hết cho 4
Tích của 4 số tự nhiên liên tiếp có dạng xen kẽ:
chẵn * lẻ * chẵn * lẻ
Viết dưới ngông ngữ toán:
\(2k\left(2k+1\right)\left(2k\right)\left(2k+1\right)=4kk\left(2k+1\right)\left(2k+1\right)\) chia hết cho 4
* Chú ý: k là số tự nhiên
vì 4 số liên tiếp có 2 số chẵn
mà 2 số chẵn nhân với nhau cia hết cho 4
thế thôi
Chứng tỏ rằng tích của 4 số tự nhiên liên tiếp bao giờ cũng chia hết cho 4
4 số tự nhiên liên tiếp luôn có 1 số chia hết cho 4.
=> Tích 4 số tự nhiên liên tiếp luôn chia hết cho 4.
Ta gọi 4 số tự nhiên liên tiếp là:a,a+1,a+2,a+3.
1.Chứng tỏ rằng:
a)Trong hai số tự nhiên liên tiếp ,có một số chia hết cho 2
b)Trong hai số tự nhiên liên tiếp ,có một số chia hết cho 3
2.Chứng tỏ rằng:
a)Tổng của 3 số tự nhiên liên tiếp là một số chia hết cho 3
b)Tổng của 4 số tự nhiên liên tiếp là một số không chia hết cho 4
3.Chứng tỏ rằng số có dạng aaaaaa bao giờ cũng chia hết cho 7
4.Chứng tỏ rằng số có dạng abcabc bao giờ cũng chia hết cho 11
5. Chứng tỏ rằng nếu hai số có cùng số dư khi chia co 7 thì hiệu của chúng chia hết
Giúp mình nha mình đang gấp lắm!!!
Câu 5 là chỗ cuối cùng là chia hết cho 7 nha .mình quên ghi
Hãy chứng tỏ rằng tích của 5 số tự nhiên liên tiếp bao giờ cũng chia hết cho 5
Gọi 5 số tự nhiên liên tiếp lần lượt là a, a + 1, a + 2, a + 3, a + 4
- Nếu a chia hết cho 5 thì a x (a + 1) x (a + 2) x (a + 3) x (a + 4) chia hết cho 5
- Nếu a chia cho 5 dư 1 thì a + 4 chia hết cho 5, do đó:
a x (a + 1) x (a + 2) x (a + 3) x (a + 4) chia hết cho 5
- Nếu a chia cho 5 dư 2 thì a + 3 chia hết cho 5, do đó:
a x (a + 1) x (a + 2) x (a + 3) x (a + 4) chia hết cho 5
- Nếu a chia cho 5 dư 3 thì a + 2 chia hết cho 5, do đó:
a x (a + 1) x (a + 2) x (a + 3) x (a + 4) chia hết cho 5
- Nếu a chia cho 5 dư 4 thì a + 1 chia hết cho 5, do đó:
a x (a + 1) x (a + 2) x (a + 3) x (a + 4) chia hết cho 5
Vậy tích của 5 số tự nhiên liên tiếp bao giờ cũng chia hết cho 5
hãy chứng tỏ rằng tích của 5 số tự nhiên liên tiếp bao giờ cũng chia hết cho 5.
Do trong 5 số tự nhiên liên tiếp luôn tồn tại 1 số chia hết cho 5 vì vậy tích của chúng luôn chia hết cho 5
Hãy chứng tỏ rằng tích của 5 số tự nhiên liên tiếp bao giờ cũng chia hết cho 5.
gọi 5 số tự nhiên liên tiếp là a,a+1,a+2,a+3,a+4
ta có (a(a+1)(a+2)(a+4)(a+5)
trong 5 số tụ nhiên liên tiếp chắc chắn có ít nhất 1 số chia hết cho 5 nên
tích đó chia hết cho 5
vì 5 số tự nhiên liên tiếp luôn có 1 số chia hết cho 5
=> Đpcm
vì trong 5 số ít nhất cũng có 1 số chia hết cho 5 nên tích đó chia hết cho 5