Cho m, n là các số nguyên thỏa mãn:
\(\frac{1}{2m}+\frac{1}{n}=\frac{1}{3}\). Tìm GTLN của B=mn.
Cho m , n nguyên thỏa mãn : \(\frac{1}{2m}+\frac{1}{n}=\frac{1}{3}.\)Tìm GTLN của P = m . n .
Cho m,n là các số nguyên thỏa \(\frac{1}{2m}+\frac{1}{n}=\frac{1}{3}\) Tìm GTLN của m.n
Giúp với
Cho m,n là các số nguyên thỏa mãn \(\frac{1}{2m}+\frac{1}{n}=\frac{1}{3}\)
tìm Max B=m.n
cho m,n là 2 số nguyên thỏa mãn \(\frac{1}{2m}+\frac{1}{n}=\frac{1}{3}\). Tìm GTLN của B=mn
1/tìm số n nguyên dương thỏa mãn
\(\sqrt{\left(3+2\sqrt{2}\right)^n}+\sqrt{\left(3-2\sqrt{2}\right)^n}=6\)
2/ cho a, b là các số dương thỏa mãn \(1\le a\le b\le2\)
tìm GTLN của \(A=\frac{a}{b}+\frac{b}{a}\)
a) Cho a, b, c là ba số nguyên dương nguyên tố cùng nhau thỏa mãn: \(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\) hỏi a + b có là số chính phương không? vì sao?
b) Cho x, y, z là các số dương thỏa mãn: z ≥ 60, x + y + z = 100. Tìm GTLN của A = xyz
Ta có:
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\Leftrightarrow\left(a+b\right)c=ab\Leftrightarrow ab-bc-ab=0\)
Hay \(ab-bc-ab+c^2=c^2\Leftrightarrow\left(b-c\right)\left(a-c\right)=c^2\)
Nếu \(\left(b-c;a-c\right)=d\ne1\Rightarrow c^2=d^2\left(loai\right)\)
Vậy \(\left(b-c;a-c\right)=1\Rightarrow c-b;c-a\) là 2 số chính phương
Đặt \(b-c=n^2;a-c=m^2\)
\(\Rightarrow a+b=b-c+a-c+2c=m^2+n^2+2mn=\left(m+n\right)^2\) là số chính phương
cho mình hỏi tại sao ở TH1: c^2=d^2 lại loại vậy ạ
Nếu m,n,p là các số nguyên dương thỏa mãn m+\(\frac{1}{n+\frac{1}{p}}\)=\(\frac{17}{3}\). Tìm n
Ta có \(\frac{17}{3}=5+\frac{2}{3}=5+\frac{1}{\frac{3}{2}}=5+\frac{1}{1+\frac{1}{2}}\)
=> m=5;n=1;p=2
cho a,b,c là các số thực dương thỏa mãn abc=1 Tìm GTLN của \(P=\frac{1}{a+2b+3}+\frac{1}{b+2c+3}+\frac{1}{c+2a+3}\)
Đặt \(a=x^2;b=y^2;c=z^2\)khi đó ta được xyz=1 và biểu thức P viết được thành
\(P=\frac{1}{x^2+2y^2+3}+\frac{1}{y^2+2x^2+3}+\frac{1}{z^2+2x^2+3}\)
Ta có \(x^2+y^2\ge2xy;y^2+1\ge2y\Rightarrow x^2+2y^2+3\ge2\left(xy+y+1\right)\)
Do đó ta được \(\frac{1}{x^2+2y^2+3}\le\frac{1}{2}\cdot\frac{1}{xy+y+1}\)
Chứng minh tương tự ta có:
\(\frac{1}{y^2+2z^2+3}\le\frac{1}{2}\cdot\frac{1}{yz+z+1};\frac{1}{z^2+2x^2+3}\le\frac{1}{2}\cdot\frac{1}{zx+z+1}\)
Cộng các vế BĐT trên ta được
\(P\le\frac{1}{2}\left(\frac{1}{xy+y+1}+\frac{1}{yz+z+1}+\frac{1}{zx+x+1}\right)\)
Ta cần chứng minh \(\frac{1}{ab+b+1}+\frac{1}{bc+b+1}+\frac{1}{ca+a+1}=1\)
Do xyz=1 nên ta được
\(\frac{1}{xy+y+1}+\frac{1}{yz+z+1}+\frac{1}{zx+x+1}=\frac{zx}{z+1+zx}+\frac{x}{1+zx+z}+\frac{1}{zx+x+1}=1\)
Từ đó ta được
\(P\le\frac{1}{2}\). Dấu "=" xảy ra <=> a=b=c=1
Cho a,b,c là 3 số nguyên dương thỏa mãn:
\(\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{a+c+1}=2\)
Tìm GTLN của (a+b)(b+c)(a+c)