Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Minh Đức
Xem chi tiết
Lê Minh Đức
24 tháng 7 2017 lúc 17:04

Trên tia đối của tia CB lấy điểm F sao cho \(CF=\frac{1}{2}AM\).

Ta có: \(\Delta ADM\infty\Delta CDF\)vì \(\frac{CD}{AD}=\frac{CF}{AM}=\frac{1}{2}\)và A=C=90 độ.

Suy ra: DM=2DF 

ADM=CDF\(\Rightarrow\)FMD vuông \(\Rightarrow\)EDF+EDM=90 độ \(\Rightarrow\)EDF+CDE=90 độ

Mà DEF+CDE=90 độ

Suy ra: EDF=DEF\(\Rightarrow\)tam giác DEF cân tại F.\(\Rightarrow\)DF=EF

Vậy DM=2DF=2EF=2EC+2CF=2EC+AM

Nguyen Thi Thu Trang
Xem chi tiết
Freya
20 tháng 3 2017 lúc 18:12

chịu bài này quá khó 

CHÚC BẠN HỌC GIỎI

TK MÌNH NHÉ

SnipAres
Xem chi tiết
Nguyễn Xuân Long
13 tháng 12 2018 lúc 22:17

biết làm chưa chỉ với

nguyễn lâm
19 tháng 2 2020 lúc 22:55

Lấy F trên tia đối của AB sao cho AF=CK

=>AM+CK=AM=MF 3

Xét tam giác DAF và tam giác NCN có

AF=CK(gt)

DAF=DCK(gt DK là pg)

AD=CD(gt)

=> tam giác DAF= tam giác DCK(c-g-c)

=>AFD=CKD( 2 góc t/ứng)

Mà CKD=ADK(slt)=>AFD=ADK 1

Mặt khác ADK= ADM+MDK, MDK=KDC(gt)

=>ADK=ADM+KDC=ADM+ADF 2

Từ 1 và 2=>AFD=ADM+ADF=MDF=>tam giác FMD cân tại M=>FM=MD 4

 Từ 3 và 4=>AM+CK=DM

     -dpcm-

Khách vãng lai đã xóa
Khiêm Nguyễn Gia
Xem chi tiết
Nguyễn Xuân Thành
5 tháng 9 2023 lúc 16:31

Trên tia đối của tia \(AM\) lấy \(I\) sao cho: \(AI=CE\)

Xét \(\Delta ADI\) và \(\Delta CDE\) có:

\(AD=CD\left(gt\right)\)

\(\widehat{DAI}=\widehat{DCE}=90^o\)

\(AI=CE\left(gt\right)\)

Vậy \(\Delta ADI=\Delta CDE\left(c.g.c\right)\)

\(\Leftrightarrow\widehat{IDA}=\widehat{EDC}\) ( 2 góc t/ứng )

\(\Leftrightarrow\widehat{AID}=\widehat{CED}\) ( 2 góc t/ứng )

\(\Leftrightarrow\) \(\widehat{CED}=\widehat{ADE}\) mà 2 góc này ở vị trí so le trong ( do \(AD//BC\) )

\(\Rightarrow\widehat{AID}=\widehat{ADE}\left(1\right)\)

Ta có: \(\widehat{ADE}=\widehat{ADM}+\widehat{MDE}\left(2\right)\)

Vì \(\widehat{MDE}=\widehat{EDC}\)

\(\Rightarrow\widehat{MED}=\widehat{IDA}\left(3\right)\)

Từ \(\left(2\right);\left(3\right)\Rightarrow\widehat{ADE}=\widehat{ADM}+\widehat{IDA}=\widehat{IDM}\left(4\right)\)

Từ \(\left(1\right);\left(4\right)\Rightarrow\widehat{AID}=\widehat{IDM}\)

\(\Leftrightarrow\widehat{MID}=\widehat{IDM}\)

\(\Leftrightarrow\Delta IDM\) cân \(\left\{M\right\}\)

\(\Leftrightarrow DM=IM\)

Ta lại có: \(IM=AM+AI=AM+CE\)

\(\Rightarrow DM=AM+CE\)

nguyen khanh ly
Xem chi tiết
nguyen khanh ly
22 tháng 4 2019 lúc 21:37

Giúp mình câu d nha mai mk phải nộp bài rùi

Alice Andrea
12 tháng 4 2020 lúc 16:36

Câu c làm thế nào vậy ?

Khách vãng lai đã xóa
ha nguyen
Xem chi tiết
Nguyễn Phúc Bảo
Xem chi tiết
Nguyên Đăng
Xem chi tiết
Hà duyên
Xem chi tiết
Dương Lam Hàng
24 tháng 3 2019 lúc 21:41

A B C D E M 5 cm 4 cm 8 cm

Vì ABCD là hình chữ nhật nên AB = DC = 8 cm ; AD = BC = 4 cm

Ta có: \(MB=AB-AM=8-5=3\left(cm\right)\)

Vì \(AD//BC\) \(\Rightarrow AD//CE\)

Áp dụng hệ quả của định lí Ta-lét: \(\frac{AD}{BE}=\frac{AM}{MB}\Rightarrow BE=\frac{AD.MB}{AM}=\frac{4.3}{5}=2,4\left(cm\right)\)

Suy ra: EC = BE + BC = 2,4 + 4 = 6.4 (cm)

Tam giác ABC vuông tại C:

Áp dụng định lí Pytago ta có: \(DE^2=EC^2+CD^2\Rightarrow DE=\sqrt{EC^2+CD^2}=\sqrt{\left(6,4\right)^2+8^2}=\frac{8\sqrt{41}}{5}\left(cm\right)\)