Bài tập 2: Cho hình chữ nhật ABCD, AD=2DC. M ∈ AB. Tia phân giác ∠CDM cắt BC ở E. CM:\(AM+2EC=DM\).
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho hình chữ nhật ABCD (AD=2DC). M thuộc AB. Tia phân giác của góc CDM cắt BC tại E. Chứng minh DM = AM + 2EC.
Trên tia đối của tia CB lấy điểm F sao cho \(CF=\frac{1}{2}AM\).
Ta có: \(\Delta ADM\infty\Delta CDF\)vì \(\frac{CD}{AD}=\frac{CF}{AM}=\frac{1}{2}\)và A=C=90 độ.
Suy ra: DM=2DF
ADM=CDF\(\Rightarrow\)FMD vuông \(\Rightarrow\)EDF+EDM=90 độ \(\Rightarrow\)EDF+CDE=90 độ
Mà DEF+CDE=90 độ
Suy ra: EDF=DEF\(\Rightarrow\)tam giác DEF cân tại F.\(\Rightarrow\)DF=EF
Vậy DM=2DF=2EF=2EC+2CF=2EC+AM
Cho hình chữ nhật ABCD có AD=2DC. M là điểm trên cạnh AB. Tia phân giác góc CDM cắt BC tại E. Chứng minh rằng DM=AM+2EC
chịu bài này quá khó
CHÚC BẠN HỌC GIỎI
TK MÌNH NHÉ
Cho Hình Vuông ABCD có M,N,E lần lượt là trung điểm AB,BC,CD. DN cắt CM tại I. Phân giác góc CDM cắt BC tại K .
Chứng Minh DM = AM +CK
Lấy F trên tia đối của AB sao cho AF=CK
=>AM+CK=AM=MF 3
Xét tam giác DAF và tam giác NCN có
AF=CK(gt)
DAF=DCK(gt DK là pg)
AD=CD(gt)
=> tam giác DAF= tam giác DCK(c-g-c)
=>AFD=CKD( 2 góc t/ứng)
Mà CKD=ADK(slt)=>AFD=ADK 1
Mặt khác ADK= ADM+MDK, MDK=KDC(gt)
=>ADK=ADM+KDC=ADM+ADF 2
Từ 1 và 2=>AFD=ADM+ADF=MDF=>tam giác FMD cân tại M=>FM=MD 4
Từ 3 và 4=>AM+CK=DM
-dpcm-
Cho hình vuông \(ABCD\) có cạnh bằng \(a\). Gọi \(M\), \(N\) theo thứ tự là trung điểm của \(AB\) và \(BC\).
\(a.\) Tính diện tích tứ giác \(AMND\).
\(b.\) Phân giác góc \(CDM\) cắt \(BC\) tại \(E\). Chứng minh \(DM=AM+CE\)
Trên tia đối của tia \(AM\) lấy \(I\) sao cho: \(AI=CE\)
Xét \(\Delta ADI\) và \(\Delta CDE\) có:
\(AD=CD\left(gt\right)\)
\(\widehat{DAI}=\widehat{DCE}=90^o\)
\(AI=CE\left(gt\right)\)
Vậy \(\Delta ADI=\Delta CDE\left(c.g.c\right)\)
\(\Leftrightarrow\widehat{IDA}=\widehat{EDC}\) ( 2 góc t/ứng )
\(\Leftrightarrow\widehat{AID}=\widehat{CED}\) ( 2 góc t/ứng )
\(\Leftrightarrow\) \(\widehat{CED}=\widehat{ADE}\) mà 2 góc này ở vị trí so le trong ( do \(AD//BC\) )
\(\Rightarrow\widehat{AID}=\widehat{ADE}\left(1\right)\)
Ta có: \(\widehat{ADE}=\widehat{ADM}+\widehat{MDE}\left(2\right)\)
Vì \(\widehat{MDE}=\widehat{EDC}\)
\(\Rightarrow\widehat{MED}=\widehat{IDA}\left(3\right)\)
Từ \(\left(2\right);\left(3\right)\Rightarrow\widehat{ADE}=\widehat{ADM}+\widehat{IDA}=\widehat{IDM}\left(4\right)\)
Từ \(\left(1\right);\left(4\right)\Rightarrow\widehat{AID}=\widehat{IDM}\)
\(\Leftrightarrow\widehat{MID}=\widehat{IDM}\)
\(\Leftrightarrow\Delta IDM\) cân \(\left\{M\right\}\)
\(\Leftrightarrow DM=IM\)
Ta lại có: \(IM=AM+AI=AM+CE\)
\(\Rightarrow DM=AM+CE\)
Cho hình chữ nhật ABCD . M là hình chiếu của A trên BD . a ) chứng minh tam giác MAD đồng dạng với tam giác ABD b ) nếu AB = 8 cm , AD = 6 cm tính DM c ) đường thẳng AM cắt DC và BC theo thứ tự N và P chứng minh AM ^2 = MN . MP d) trên AB và CD lấy điểm E và F EF cắt BD tại K chứng minh AB / BE + BC / BF = BD / Bk
Giúp mình câu d nha mai mk phải nộp bài rùi
Câu c làm thế nào vậy ?
cho hình thang ABCD (AB//CD) CÓ :
AB=3,CD=7,AD=6,BC=4 tia phân giác góc A và D cắt nhau ở E
a, CM: tia phân giác góc C và B cắt nhau ở E
b,lấy M, N là trung điểm của AD và BC .CM: M,N,E thẳng hàng
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
giúp mik vs ạ mik cho 5 sao
Cho hình chữ nhật ABCD có BC = 2DC. Tia Cx tạo CD một góc bằng 15o cắt AD tại E. Chứng minh rằng: Tam giác BCE cân.
Cho hình chữ nhật ABCD, AB=8, AD =4. Trên tia AB lấy AM = 5cm. Tia DM cắt tia CB tại E. Tính ED
Vì ABCD là hình chữ nhật nên AB = DC = 8 cm ; AD = BC = 4 cm
Ta có: \(MB=AB-AM=8-5=3\left(cm\right)\)
Vì \(AD//BC\) \(\Rightarrow AD//CE\)
Áp dụng hệ quả của định lí Ta-lét: \(\frac{AD}{BE}=\frac{AM}{MB}\Rightarrow BE=\frac{AD.MB}{AM}=\frac{4.3}{5}=2,4\left(cm\right)\)
Suy ra: EC = BE + BC = 2,4 + 4 = 6.4 (cm)
Tam giác ABC vuông tại C:
Áp dụng định lí Pytago ta có: \(DE^2=EC^2+CD^2\Rightarrow DE=\sqrt{EC^2+CD^2}=\sqrt{\left(6,4\right)^2+8^2}=\frac{8\sqrt{41}}{5}\left(cm\right)\)