1 + 2.6 + 3.6^2 + 4.6^3 +...+ 100.6^99
Tính: S=1+2.6+3.62+4.63+..................+100.699
Tính
B=1 + 2 + 5 + 14 + ... + 3^n-1 + 1 : 2
C= 1 + 2.6 + 3.6^2 + 4.6^3 + ... + 100.6^99
Tính:
A= 1+ 2.6 +3.62 + 4.63+...+100.699
B= 12 +32 +52+...+(2m-1)2
Ta có:
\(A=1+2.6+3.6^2+4.6^3+...+100.6^{99}\)
=> \(6A=6+2.6^2+3.6^3+....+99.6^{99}+100.6^{100}\)
=> A - 6A = \(1+6+6^2+6^3+...+6^{99}-100.6^{100}\)
=> \(-5A=1+6+6^2+...+6^{99}-100.6^{100}\)
Đặt: \(B=1+6+6^2+...+6^{99}\)
=> \(6B=6+6^2+6^3+...+6^{100}\)
=> 6 B - B = \(6^{100}-1\)
=> B = \(\frac{6^{100}-1}{5}\)
=> \(-5A=\frac{6^{100}-1}{5}-100.6^{100}\)
=> \(A=\frac{499.6^{100}+1}{25}\)
tính giá trị biểu thức : 1+2.6+3.6^2+.......+100.6^99
Tính:
(1.4 + 2.6) × 2
70 ÷ (4.6 + 3.4 - 1)
(1,4 + 2,6) x 2 = 4 x 2 = 8
70 : (4,6 + 3,4 - 1) = 70 : 7 = 10
\(\left(1,4+2,6\right)\times2\)
\(=4\times2=8\)
\(70\div\left(4,6+3,4-1\right)\)
\(=70\div7=10\)
(1,4 + 2,6) x 2 = 4 x 2 = 8
70 : ( 4,6 + 3,4 - 1) = 70 : 7 = 10
tính
a) A = \(\dfrac{6^3+3.6^2+3^3}{-13}\)
b) B =\(\dfrac{2.8^4.27^2+4.6^9}{2^3.6^7+2^7.40.9^4}\)
c) C=\(\dfrac{5.4^{15}.9^9-4.3^{20}.8^9}{5.2^{16}.6^{19}-7.2^{29}.27^6}\)
a: \(A=\dfrac{3^3\cdot2^3+3^3\cdot2^2+3^3\cdot1}{-13}=\dfrac{27\left(2^3+2^2+1\right)}{-13}=-27\)
b: \(B=\dfrac{2\cdot2^{12}\cdot3^6+2^{11}\cdot3^9}{2^3\cdot2^7\cdot3^7+2^7\cdot2^3\cdot5\cdot3^8}\)
\(=\dfrac{2^{13}\cdot3^6+2^{11}\cdot3^9}{2^{10}\cdot3^7+2^{10}\cdot5\cdot3^8}\)
\(=\dfrac{2^{11}\cdot3^6\left(2^2+3^3\right)}{2^{10}\cdot3^7\left(1+5\cdot3\right)}=\dfrac{2}{3}\cdot\dfrac{4+27}{1+15}=\dfrac{2}{3}\cdot\dfrac{31}{16}=\dfrac{31}{24}\)
c: \(C=\dfrac{5\cdot2^{30}\cdot3^{18}-2^{29}\cdot3^{20}}{5\cdot2^{35}\cdot3^{19}-7\cdot2^{29}\cdot3^{18}}\)
\(=\dfrac{2^{29}\cdot3^{18}\left(5\cdot2-3^2\right)}{2^{29}\cdot3^{18}\left(5\cdot2^6-7\right)}=\dfrac{10-9}{5\cdot64-7}=\dfrac{1}{313}\)
Tính :
a, 1.3+2.4+3.5+4.6+5.7+...+99.101
b, 1.4+2.5+3.6+4.7+...+99.102
c, 1+3+6+10+...+4851+4950
d, 1.2.3+2.3.4+3.4.5+...+98.99.10
e, 12+32+52+...+972+992
g, 1.22+2.32+3.42+...+98.992
h, 13+33+53+72+...+973+993
1) Tính
\(\dfrac{7^4.3-7^3}{7^4.6-7^3.2}\) ; \(\dfrac{10^3+5.10^2+5}{6^3+3.6^2+3^2}\) ; \(E=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\)
2) Tìm x biết
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{x.\left(x+1\right)}\) ; \(3^{x+1}+3^{x+3}=810\)
MN ƠI ! GIÚP MIK VS > . <
Bài 1:
a) Ta có: \(\dfrac{7^4\cdot3-7^3}{7^4\cdot6-7^3\cdot2}\)
\(=\dfrac{7^3\cdot\left(7\cdot3-1\right)}{7^3\cdot2\left(7\cdot3-1\right)}\)
\(=\dfrac{1}{2}\)
c) Ta có: \(E=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\)
\(\Leftrightarrow\dfrac{1}{3}\cdot E=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{101}}\)
\(\Leftrightarrow E-\dfrac{1}{3}\cdot E=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{101}}\right)\)
\(\Leftrightarrow E\cdot\dfrac{2}{3}=1-\dfrac{1}{3^{101}}\)
\(\Leftrightarrow E=\dfrac{3-\dfrac{3}{3^{101}}}{2}=\dfrac{1-\dfrac{1}{3^{100}}}{2}\)
Tính
a,B=2.4+4.6+6.8+...+98.100
b,B=3+3.6+6.9+...+96.99
a,6B=2.4.6+4.6.(8-2)+...............+98.100.(102-96)
6B=2.4.6+4.6.8-2.4.6+..............+98.100.102-96.98.100
6B=98.100.102
B=98.100.102:6
B=166600