tinh tong
S1= A=|A|+A+|A|+...+A , A thuộc Z có 101 số A
Tinh tong :
a) S1 = a + | a | a thuoc tap hop Z
b) S2 = a + | a | + a + | a | + .............. voi a thuoc Z va tong co 101 so hang
cho phân số A=n+1/n-3 (n thuộc Z, n khác 3)
a,Tìm n để A có giá trị nguyên
b,Tìm n để A là phân số tối giản
Tra loi nhanh giup minh voi
Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?
a) 14 thuộc N.
b) 0 thuộc N*.
c) Có số a thuộc N* mà không thuộc N.
d) Có số b thuộc N mà không thuộc N*.
a) 14 thuộc N (Đúng)
b) 0 thuộc N* (Sai)
c) Có số a thuộc N* mà không thuộc N(Đúng)
d) Có số b thuộc N mà không thuộc N* (Sai)
14 thuộc N [đúng]
0 thuộc N* [sai]
có số a thuộc n* mà không thuộc N [sai]
có số b thuộc N mà không thuộc N* [đúng]
Cho A = 1 + 2 - 3 - 4 + 5 + 6 - ... - 99 - 100
A có chia hết cho 2 , 3 , 5 không ?A có bao nhiêu ước thuộc số nguyên , bao nhiêu ước thuộc số tự nhiên ?Bài1
a. x=1/4+-2/13; x/-3=-2/3+1/7; x=7/-25+1/5
b. x=5/11+4/-9;5 /9+x/-1=-1/3; x+7/12=7/18-1/8
Bài 2
Cho phân soosA=6n-1/3n+3
a. Tìm n thuộc Zđể A là phân số
b. Tìm số nguyên n để A có giá trị là số nguyên
c. Tìm n thuộc Z để A có giá trị nhỏ nhất
cho biểu thức A = 6n -3 /3n+1(n thuộc Z)
a,Tìm GTNN và GTLN của biểu thức A
b, tìm n để biểu thức A có giá trị nguyên
c, tìm n để A là phân số
d, tìm phân số A biết n= -2
bài 1 ) tìm 2 phân số có tử = 9 biết giá trị của mỗi phân số đó lớn hơn -11/13 và nhỏ hơn -11/15
bài 2) cho M = x^2 -5/x^2 -2 (x thuộc Z ). Tìm x thuộc Z để M là số nguyên
bài 3 ) cho 6 số nguyên dương a<b<c<d<m<n
chứng minh rằng a+c+m/a+b+c+d+m+n<1/2
Viết liên tiếp từ 1 tới 101 tạo thành số A= 123...101.
a,A có là́ hợp số ko
b,A có phải là số chính phương
Ai giải giùm mình tích nha thanks
a) Tính tổng các chữ số của A ta thấy:
1+2+3 chia hết cho 3
4+5+6 chia hết cho 3
...
97+98+99 chia hết cho 3
100 + 101 = 201 chia hết cho 3
A có tổng các chữ số chia hết cho 3 nên A chia hết cho 3 => A là hợp số.
b) Vẫn tính tổng của A, nhưng theo cách:
1+2+3+...+9 chia hết cho 9
11+12+13+...+19 chia hết cho 9
...
91+92+93+...+99 chia hết cho 9
10+20+30+...+90 chia hết cho 9
100+101 không chia hết cho 9
Nên A không chia hết cho 9.
A chia hết cho 3 nên A viết được dưới dạng: A = 3*B. Và B không chia hết cho 3 vì A không chia hết cho 9.
Nên A không phải là 1 số chính phương.
+ Chữ số 0 xuất hiện ở hàng đơn vị của các số: 10; 20; 30; ....; 100 gồm: (100 - 10) : 10 + 1 = 10 ( lần)
Chữ số 0 xuất hiện ở hàng chục của các số: 100 và 101 gồm 2 lần
=> có 10 + 2 = 12 ( chữ số 0) xuất hiện ở A
+ Chữ số 1 xuất hiện ở hàng đơn vị của các số: 1; 11; 21; ...; 101 gồm: (101 - 1) : 10 + 1 = 11 ( lần)
Chữ số 1 xuất hiện ở hàng chục của các số: 10; 11; 12; ...; 19 gồm: (19 - 10) : 1 + 1 = 10 ( lần)
Chữ số 1 xuất hiện ở hàng trăm của các số: 100 và 101 gồm 2 lần
=> có 11 + 10 + 2 = 23 ( chữ số 1) xuất hiện ở A
+ Chữ số 2 xuất hiện ở hàng đơn vị của các số: 2; 12; 22; ...; 92 gồm: (92 - 2) : 10 + 1 = 10 ( lần)
Chữ số 2 xuất hiện ở hàng chục của các số: 20; 21; 22; ...; 29 gồm: (29 - 20) : 1 + 1 = 10 ( lần)
=> có 10 + 10 = 20 ( chữ số 2) xuất hiện ở A
...
+ Chữ số 9 xuất hiện ở hàng đơn vị của các số: 9; 19; 29; ...; 99 gồm: (99 - 9) : 10 + 1 = 10 ( lần)
Chữ số 9 xuất hiện ở hàng chục của các số: 90; 91; 92; ...; 99 gồm: (99 - 90) : 1 + 1 = 10 ( lần)
=> có 10 + 10 = 20 ( chữ số 9) xuất hiện ở A
=> Tổng các chữ số của A là: 12×0 + 23×1 + 20×(2+3+...+9) = 903
a) Vì 903 chia hết cho 3
=> A chia hết cho 3
=> A là hợp số
b) Vì 903 chia hết cho 3 nhưng không chia hết cho 9
=> A chia hết cho 3 nhưng không chia hết cho 9
=> A không phải số chính phương
a) Tính tổng các chữ số của A ta thấy:
1+2+3 chia hết cho 3
4+5+6 chia hết cho 3
...
97+98+99 chia hết cho 3
100 + 101 = 201 chia hết cho 3
A có tổng các chữ số chia hết cho 3 nên A chia hết cho 3 => A là hợp số.
b) Vẫn tính tổng của A, nhưng theo cách:
1+2+3+...+9 chia hết cho 9
11+12+13+...+19 chia hết cho 9
...
91+92+93+...+99 chia hết cho 9
10+20+30+...+90 chia hết cho 9
100+101 không chia hết cho 9
Nên A không chia hết cho 9.
A chia hết cho 3 nên A viết được dưới dạng: A = 3*B. Và B không chia hết cho 3 vì A không chia hết cho 9.
Nên A không phải là 1 số chính phương.
A=2n + 3 phần n (n thuộc Z)
a với giá trị nào của n thì A là phân số
b với giá trị nào của n thì A là số thuộc Z
\(A=\frac{2n+3}{n}=2+\frac{3}{n}\)
a) A là phân số <=> n khác Ư(3) <=> n khác (+-1; +-3)
b) A thuộc Z <=> n thuộc Ư(3) <=> n thuộc (+-1; +-3)