cho tam giác def có độ dài de=6cm ,ef=10cm, df=8cm . hỏi tam giác dè có phải tam giác vuông hay không vì s
Cho tam giác ABC vuông tại A, có AB = 6cm, AC = 8cm , BC = 10cm và tam giác DEF vuông tại D có DE = 9cm, DF = 12cm, EF = 15cm.
a) Hai tam giác ABC và DEF có đồng dạng không? Vì sao?
b) Tính tỉ số chu vi của hai tam giác ấy?
a: Xét ΔABC vuông tại A và ΔDEF vuông tại D có
AB/DE=AC/DF
Do đó: ΔABC\(\sim\)ΔDEF
b: \(\dfrac{C_{ABC}}{C_{DEF}}=\dfrac{AB}{DE}=\dfrac{2}{3}\)
cho tam giác ABC vuông tại A có AB=6cm,AC=8cm và tam giác DÈ vuông góc tại D có DE=9cm, DF=15cm
a, hai tam giác ABC và tam giá DEF có đồng dạng ko. vì sao
b, tính tỉ số của 2 tam giác đấy
Cho tam giác DEF vuông tại D, có DE = 6cm, DF = 8cm. Đường cao AH
a) Chứng minh tam giác DEF đồng dạng tam giác HDF
b) tính độ dài các đoạn thẳng EF, HE, HF
Cho tam giác DEF có EF = 10cm, DE=6cm, DF=8cm. DH vuông góc với F tại M a)CMR: Tam giác DEF vuông b)Tính DH, HE, HI c)Gọi I là trung điểm DF vẽ IM vuông góc với EF CMR: DE2=ME2-MF2
Cho tam giác DEF có EF = 10cm, DE=6cm, DF=8cm. DH vuông góc với F tai M a)CMR: Tam giác DEF vuông b)Tính DH, HE, HI c)Gọi I là trung điểm DF vẽ IM vuông góc với EF CMR: DE2= ME2-MF2
Cho tam giác DEF, biết de=6cm ,df=8cm, ef=10cm.
a)Cm tam giác def là tam giác vuông
b)Vẽ đường cao dk.tính dk,fk
c)giải tam giác vuông edk
d)Vẽ phân giác dm.tính các độ dài me,mf.
e)tính sinF trong 2 tam giác vuông dfk và def.Từ dó suy ra ed.df=dk.ef
(kết quả về góc làm trọn đén phút,về canhjk làm tròn đến chữ số thập phân thứ 3)
cho tam giác ABC và DEF có A=D,B=E,AB=8cm,BC=10cm,DE=6cm
a, Tính đọ dài các cạnh AC/DE,EF,biết rằng cạnh AC dài hơn cạnh DF là 3cm
b,Cho diện tích tam giác ABC bằng 39,69cm2.Tính diện tích tam giác DEF
cho tam giác DEF vuông tại D . Có DE =6cm , EF=10cm
a) tính độ dài DF
b)vẽ tia phân giác ÊM của góc DEF (M thuộc DF). Từ M vẽ MH vuông góc với EF tại H . Chứng minh tam giác DEM= tam giác HEM
c) trên tia ED lấy K sao cho EF=EK
chứng minh: K,M,H thẳng hàng
b. Ta co goc EMD + goc EMH =90 mà DEM = HEM nen EMD = EMH. Xet 2 tam giac DEM va HEM có EH canh chung, goc EMH =EMD, DEM=HEM
C. EF=EK suy ra tam giac EFK can tai E. EM la tia phan giác, cung là đường cao, ta lại có ED vuong góc voi EK. Suy ra M là trực tâm. Mà MH vuong goc EF. Suy ra KMH thang hang
Xét \(\Delta ABC\)vuông tại A theo định lí Pitago ta có : \(AB^2+AC^2=BC^2\Rightarrow6^2+8^2=BC^2\)
\(\Rightarrow BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
Xét \(\Delta DEF\)vuông tại D theo định lí Pitago ta có :\(DE^2+DF^2=EF^2\)
=> \(DF^2=EF^2-DE^2=15^2-9^2=144\)
=> \(DF=\sqrt{144}=12\left(cm\right)\)
Để hai tam giác trên đồng dạng với nhau , trước hết tính tỉ lệ tương ứng với 3 cạnh
Xét tam giác ABC và tam giác DEF ta có :
\(\frac{AB}{DE}=\frac{6}{9}=\frac{2}{3}\)
\(\frac{BC}{EF}=\frac{10}{15}=\frac{2}{3}\)
\(\frac{AC}{DF}=\frac{8}{12}=\frac{2}{3}\)
=> \(\frac{AB}{DE}=\frac{BC}{EF}=\frac{AC}{DF}\left(=\frac{2}{3}\right)\)
=> Tam giác ABC đồng dạng tam giác DEF
Nếu bạn muốn làm tam giác DEF đồng dạng với tam giác ABC cũng được
hai tam giác ko thể đồng dạng bạn nhé
Hai tam giác ABC và DEF có góc A = góc D, góc B = góc E, AB = 8cm, BC = 10cm, DE =6cm. Tính độ dài các cạnh AC, DF và EF, biết rằng cạnh AC dài hơn cạnh DF là 3cm.