Chứng minh rằng nếu a + c = 2b và 2bd = c.(b+d) với (b\(\ne\) 0, d \(\ne\)0) thì a/b = c/d
Chứng minh rằng nếu a + c = 2b và 2bd = c ( b + d ) thì a/b = c/d với b, d khác 0
Chứng minh rằng: Nếu a+c= 2b và 2bd=c(b+d) (b+d khác 0) thì a/b=c/d
\(2bd=c\left(b+d\right)\Rightarrow2b=\frac{c\left(b+d\right)}{d}\)
\(\Rightarrow a+c=\frac{c\left(b+d\right)}{d}\Rightarrow\frac{a+c}{c}=\frac{b+d}{d}\Rightarrow\frac{a}{c}+1=\frac{b}{d}+1\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}\)
Ta có:
\(a+c=2b_{\left(1\right)}\)
\(2bd=c\left(b+d\right)_2\)
Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\)\(\left(a+c\right).d=c.\left(b+d\right)\)
\(\Rightarrow\)\(ad+cd=cb+cd\)( tính chất phân phối )
\(\Rightarrow\)\(ad=bc\)( rút gọn cả 2 vế cho \(cd\))
\(\Rightarrow\)\(\frac{a}{b}=\frac{c}{d}\)( tính chất cơ bản của tỉ lệ thức )
\(\Rightarrow\)\(\left(đpcm\right)\)
chứng minh rằng :Nếu a+c=2b và 2bd=c(b+d)
(b;d khác 0) thì a/b=c/d
Chứng minh rằng nếu a + c = 2b và 2bd = c.(b + d) với b, d khác 0 thì \(\dfrac{a}{b}=\dfrac{c}{d}\)
Chứng minh rằng nếu a + c = 2b và 2bd = c(b + d ) thì \(\frac{a}{b}=\frac{c}{d}\)với b,d khác 0.
Ta có: 2bd = c(b + d)
=> (a + c).d = bc + cd
=> ad + cd = bc + cd
=> ad = bc
=> \(\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)
Ta có : 2bd = c (b + d )
=) ( a + c ). d = bc + cd
=) ad + cd = bc + cd
=) ad = bc
=) a/b = c/ d ( đpcm)
Ta có : 2bd = c (b + d )
=> ( a + c ). d = bc + cd
=>ad + cd = bc + cd
=>ad = bc
=> a/b = c/ d ( đpcm)
CMR nếu : a+c=2b (1) và 2bd=c(b+d) (2) (b,d\(\ne\)0) thì \(\frac{a}{b}\)=\(\frac{c}{d}\)
Chứng minh rằng : Nếu a+c =2b và 2bd =c(b+d) thì \(\frac{a}{b}=\frac{c}{d}\) ( b,d \(\ne\) 0)
Giải đầy đủ giúp tớ nha cảm ơn nhìu
ta co:
2bd =c[b+d]= cd+cb va a+c=2b nen ta co;
2bd =[a+c]d=ad+cd=cd+cb
hayad =bc =>dieu phai chung minh
CMR: a + c = 2b và 2bd = c ( b + d ) Thì \(\frac{a}{b}=\frac{c}{b}\) với b,d \(\ne\) 0
a + c = 2b
( a + c ) . d = 2bd
Mà 2bd = c . ( b + d )
\(\Rightarrow\)( a + c ) . d = c . ( b + d )
\(\Rightarrow\)ad + cd = bc + cd
\(\Rightarrow\)ad = bc
\(\Rightarrow\)\(\frac{a}{b}=\frac{c}{d}\)( đpcm )
CMR
nếu a+c=2b
và 2bd=c(b+d) (b,d\(\ne\)0)
thì \(\frac{a}{b}\)=\(\frac{c}{d}\)
Ta có: a+c = 2b
mà 2b.d= c(b+d)
=> (a+c).d=c(b+d)
=> ad +cd = bc+cd
=> ad =bc
=>\(\frac{a}{b}=\frac{c}{d}\)
Thay 2b vào đẳng thức bên dưới ta có :
( a + c )d = c( b + d )
\(\Rightarrow\frac{c}{d}=\frac{a+c}{b+d}=\frac{a}{d}=\frac{c}{d}\)( tính chất của dãy t/s bằng nhau )
=> đpcm
Ta có : \(2bd=c\left(b+d\right)\Rightarrow\frac{2b}{b+d}=\frac{c}{d}\)
Mà \(a+c=2d\)nên:
\(\frac{a+c}{b+d}=\frac{c}{d}\)
Áp dụng TCDTSBN,ta có
\(\frac{a+c}{b+d}=\frac{c}{d}=\frac{a+c-c}{b+d-d}=\frac{a}{b}\)
Vậy....