Tìm số tự nhiên nhỏ nhất, biết rằng số đó chia cho 5,7,11 đều dư 4
tìm số tự nhiên a nhỏ nhất biết rằng khi chia cho 5,7,11 được số dư lần lượt là 3,4,6
1/tìm số tự nhiên nhỏ nhất có 3 chữ số biết rằng số đó chia cho 4,6,8 đều dư 32/tìm số tự nhiên nhỏ nhất sao cho khi chia 11 dư 6,chia cho 4 dư 1,chia cho 19 dư 113/tìm số tự nhiên nhỏ nhất sao cho a chia 5 dư 3,a chia 7 dư 44/tìm số tự nhiên nhỏ nhất bt đc chia cho 3 cho 4 cho 5 cho 6 đều dư 2 còn chia cho 7 thì dư 3.
1, Gọi số đó là :a
=>a-3⋮4,6,8
=>a-3 ϵ\(\left\{24,48,72,96,120,...\right\}\)
=>a ϵ\(\left\{27,51,75,99,123,...\right\}\)
Vì a là số nhỏ nhất có 3 chữ số thỏa mãn đề bài nên a=123.
Tìm kiếm bài học, bài tập, mã lớp, mã khóa học...
hehe
tìm số tự nhiên a nhỏ nhất biết a chia 5,7,11 đều dư 2 và a>2
a nhỏ nhất nên a -2 BCNN(5;7;11)
5=5
7=7
11=11
BCNN(5;7;11)=5.7.11=387
a là:387
Tìm số tự nhiên nhỏ nhất biết rằng số đó chia cho 6,10,15,25 đều dư 4 và chia hết cho 76
Tìm số tự nhiên nhỏ nhất biết rằng số đó chia 6;10;15;25 đều dư 4 và chia hết cho 76.
Mày chưa học dạng này à !?
1/tìm số tự nhiên nhỏ nhất có 3 chữ số biết rằng số đó chia cho 4,6,8 đều dư 3
2/tìm số tự nhiên nhỏ nhất sao cho khi chia 11 dư 6,chia cho 4 dư 1,chia cho 19 dư 11
3/tìm số tự nhiên nhỏ nhất sao cho a chia 5 dư 3,a chia 7 dư 4
4/tìm số tự nhiên nhỏ nhất bt đc chia cho 3 cho 4 cho 5 cho 6 đều dư 2 còn chia cho 7 thì dư 3.
lm đc câu nào cx đc cảm ơn nhìu...
Bài 2:
Gọi số đó là n
Theo bài ra ta có:
\(n:11\)dư 6 \(\Rightarrow n-6⋮11\Rightarrow n-6+33⋮11\Leftrightarrow n+27⋮11\)
\(n:4\)dư 1 \(\Rightarrow n-1⋮4\Rightarrow n-1+28⋮4\Leftrightarrow n+27⋮4\)
\(n:19\)dư 11 \(\Rightarrow n-11⋮19\Rightarrow n-6+38⋮19\Leftrightarrow n+27⋮19\)
\(\Rightarrow n+27⋮11;4;9\)
Có: \(n+27\)nhỏ nhất \(\Leftrightarrow n+7=BCNN\left(11;4;9\right)=836\)
\(\Rightarrow n=836-27=809\)
Vậy số tự nhiên nhỏ nhất cần tìm là: \(809\)
tìm số tự nhiên nhỏ nhất, biết rằng số đó khi chia cho 3, cho 4,cho 5, cho 6 đều dư 12, còn chia cho 7 thì dư 3.tìm số đó?
gọi số đó là a
vì a chia 3,4,5,6 đều dư 12
=>(a-12) chia hết 3,4,5,6
=>(a-12) thuộc BC(3,4,5,6)
3=3 ; 4=2^2 ; 5=5 ; 6=2*3
BCNN(3,4,5,6) = 2^2*3*5 =60
BC(3,4,5,6)=B(60)= {0;60;120;180;...}
vì a nhỏ nhất và chia 7 dư 3 =>(a-12) -3 chia hết cho 7 và là nhỏ nhất
từ tập hợp trên => (a-12)=180 =>a=192
thế đó, nói thật nó chẳng khó gì nhưng mình có làm sai thì nhắc nhé ^-^
A)tìm 5 số từ nhiên sao cho khi chia cho 5,7,11 đều dư 4.
B)tìm 2 số tự nhiên sao cho khi chia cho 3,7,15 đều dư 1
Ai nhanh nhất ,chính xác nhất mình tink cho
a)5 số tự nhiên chia hết cho cả 5,7,11 là ; 385,770,1540,3080,6160
mà chia 5,7,11,dư 4 thì 385+4,770+4,1540+4,3080+4,6160+4=389,774,1544,3084,6164
=>các số đó là 389,774,1544,3084,6164
b)các số đó là 105,210,420,840,1680.
mà các số đó chia 3,7,15 dư 1
=>các số đó cọng 1= 106,210,421,841,1681
=> các số đó là ;106,210,421,841,1681
(dấu => là dấu suy ra)
Mau mau,phải trả lời chính xác cơ,tớ đang cần gấp
Tìm số tự nhiên nhỏ nhất, biết rằng số đó khi chia cho 3, cho 4, cho 5, cho 6 đều dư là 2, còn chia cho 7 thì dư 3.
Lời giải:
Gọi số tự nhiên thỏa mãn đề là $n$. Vì số đó chia $3,4,5,6$ đều dư $2$ nên số đó sẽ có dạng
$n=BCNN(3,4,5,6).k+2$ với $k$ tự nhiên
$n=60k+2$
$n$ chia $7$ dư $3$ nghĩa là $n-3\vdots 7$
$\Leftrightarrow 60k-1\vdots 7$
$\Leftrightarrow 63k-(60k-1)\vdots 7$
$\Leftrightarrow 3k+1\vdots 7$
$\Leftrightarrow 3k-6\vdots 7$
$\Leftrightarrow k-2\vdots 7$ nên $k=7t+2$ với $t$ tự nhiên.
Thay vô $n$ thì $n=60k+2=60(7t+2)+2=420t+122$
Vì $t\geq 0$ nên $n\geq 122$
Vậy số tự nhiên nhỏ nhất thỏa đề là $122$