Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tố Quyên
Xem chi tiết

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

\(\widehat{ABC}\) chung

Do đó: ΔABC~ΔHBA

b: Xét ΔAHD vuông tại H và ΔCED vuông tại E có

\(\widehat{ADH}=\widehat{CDE}\)(hai góc đối đỉnh)

Do đó: ΔAHD~ΔCED
=>\(\dfrac{AH}{CE}=\dfrac{DA}{DC}\)

=>\(AH\cdot DC=CE\cdot AD\)

c: Ta có: ΔAHD~ΔCED

=>\(\dfrac{DA}{DC}=\dfrac{DH}{DE}\)

=>\(\dfrac{DA}{DH}=\dfrac{DC}{DE}\)

Xét ΔDAC và ΔDHE có

\(\dfrac{DA}{DH}=\dfrac{DC}{DE}\)

\(\widehat{ADC}=\widehat{HDE}\)(hai góc đối đỉnh)

Do đó: ΔDAC~ΔDHE

d: Xét ΔCAF có

AE,CH là các đường cao

AE cắt CH tại D

Do đó: D là trực tâm của ΔCAF

=>DF\(\perp\)AC

mà AB\(\perp\)AC

nên DF//AB

Xét ΔHDF vuông tại H và ΔHBA vuông tại H có

HD=HB

\(\widehat{HDF}=\widehat{HBA}\)(hai góc so le trong, DF//AB)

Do đó: ΔHDF=ΔHBA

=>HF=HA

=>H là trung điểm của AF

Xét tứ giác ABFD có

H là trung điểm chung của AF và BD

=>ABFD là hình bình hành

Hình bình hành ABFD có AF\(\perp\)BD

nên ABFD là hình thoi

Nguyễn Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 7 2023 lúc 9:17

a: Xét ΔABC vuông tại A  và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: Xét ΔEDC vuông tại E và ΔHDA vuông tại H có

góc EDC=góc HDA

=>ΔEDC đồng dạng với ΔHDA

=>DE/DH=DC/DA=EC/HA

=>DC*HA=DA*EC

c: DE/DH=DC/DA

=>DE/DC=DH/DA

=>ΔDEH đồng dạng với ΔDCA

Khách vãng lai
Xem chi tiết
Thanh Tâm Phan Thị
Xem chi tiết
Trang
Xem chi tiết
Linh Nhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 7 2021 lúc 22:59

b) Xét ΔABC vuông tại A và ΔDBE vuông tại D có 

AB=BD(gt)

\(\widehat{ABC}\) chung

Do đó: ΔABC=ΔDBE(cạnh góc vuông-góc nhọn kề)

c) Xét ΔBAH vuông tại A và ΔBDH vuông tại D có 

BH chung

BA=BD(gt)

Do đó: ΔBAH=ΔBDH(Cạnh huyền-cạnh góc vuông)

Suy ra: \(\widehat{ABH}=\widehat{DBH}\)(hai góc tương ứng)

hay BH là tia phân giác của \(\widehat{ABC}\)

d) Ta có: BH là tia phân giác của \(\widehat{ABC}\)(cmt)

nên \(\widehat{ABH}=\dfrac{\widehat{ABC}}{2}=\dfrac{60^0}{2}=30^0\)

Ta có: \(\widehat{ABH}+\widehat{HBK}=90^0\)

\(\Leftrightarrow\widehat{HBK}+30^0=90^0\)

hay \(\widehat{HBK}=60^0\)

Xét ΔCHD vuông tại D và ΔCBA vuông tại A có 

\(\widehat{ACB}\) chung

Do đó: ΔCHD\(\sim\)ΔCBA(g-g)

Suy ra: \(\widehat{CHD}=\widehat{CBA}\)(hai góc tương ứng)

\(\Leftrightarrow\widehat{CHD}=60^0\)

mà \(\widehat{CHD}=\widehat{HKB}\)(hai góc so le trong, BK//AC)

nên \(\widehat{HKB}=60^0\)

Xét ΔHBK có 

\(\widehat{HKB}=60^0\)(cmt)

\(\widehat{HBK}=60^0\)(cmt)

Do đó: ΔHBK đều(Dấu hiệu nhận biết tam giác đều)

Trần Ngọc Tú
Xem chi tiết
haplinh
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 7 2023 lúc 22:37

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: Đề sai rồi bạn

Hùng Chu
Xem chi tiết
Linh Chi Lê Thị
6 tháng 6 2021 lúc 21:21

Đây nhé!

Không có mô tả.

Không có mô tả.

Không có mô tả.

Mỳ tôm sủi cảoo
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 6 2023 lúc 23:55

a: Xet ΔABC vuông tại B và ΔAHB vuông tại H có

góc A chung

=>ΔABC đồng dạng với ΔAHB

b: Xét ΔDEC vuông tại D và ΔHEB vuông tại H có

góc DEC=góc HEB

=>ΔDEC đồng dạng với ΔHEB

=>DE/HE=DC/HB=EC/EB

=>DC*EB=HB*EC

c: ED/EH=EC/EB

=>ED/EC=EH/EB

=>ΔEDH đồng dạng với ΔECB

e:

Xét ΔCFB có

BD,CH là đường cao

BD cắt CH tại E

=>E là trực tâm

=>FE vuông góc BC

=>FE//AB

Xét ΔHBA vuông tại H và ΔHFE vuông tại H có

HA=HE

góc HBA=góc HFE

=>ΔHBA=ΔHFE

=>HB=HF

Xét tứ giác BEFA có

BF cắt EA tại trung điểm của mỗi đường
BF vuông góc EA

=>BEFA là hình thoi