Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Phương Oanh
Xem chi tiết
Trần Anh
Xem chi tiết
Charlet
Xem chi tiết
Nguyễn Hương Ly
Xem chi tiết
Trần Đình Thuyên
20 tháng 7 2017 lúc 9:18

a,

ĐK :a>0    ;    a  khác 1 , khác 4

\(Q=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right)\div\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\\ \)

\(Q=\left(\frac{\sqrt{a}-\sqrt{a+1}}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\right)\)

\(Q=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(Q=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\times\frac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)

\(Q=\frac{\sqrt{a}-2}{3\sqrt{a}}\)

b,

để Q đạt Giá Trị dương

\(\Rightarrow Q>0\Leftrightarrow\frac{\sqrt{a}-2}{3\sqrt{a}}>0\)

có \(a>0\Leftrightarrow\sqrt{a}>0\Leftrightarrow3\sqrt{a}>0\)

Suy Ra : để Q dương thì \(\sqrt{a}-2>0\)

\(\Leftrightarrow a>4\)   Thỏa mãn ĐK :  a > 0   ;a  khác 1 , khác 4

Trần Ích Bách
Xem chi tiết
Nguyễn Hồng Thắm
Xem chi tiết
Nguyễn Hồng Thắm
6 tháng 10 2018 lúc 11:12

Ai giải giúp mình bài 1 với bài 4 trước đi

Nữ hoàng sến súa là ta
Xem chi tiết
Thanh Tùng DZ
13 tháng 7 2019 lúc 19:14

a) ĐKXĐ : \(a>0;a\ne1\)

\(Q=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}+2}-\frac{\sqrt{a}-2}{\sqrt{a}-1}\right)\)

\(Q=\left(\frac{\sqrt{a}-\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)\sqrt{a}}\right):\left(\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\right)\)

\(Q=\frac{1}{\left(\sqrt{a}-1\right)\sqrt{a}}:\frac{\left(a-1\right)-\left(a-4\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}=\frac{1}{\left(\sqrt{a}-1\right)\sqrt{a}}.\frac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}{3}\)

\(Q=\frac{\sqrt{a}+2}{3\sqrt{a}}\)

b) \(Q=\frac{\sqrt{a}+2}{3\sqrt{a}}>2\Rightarrow\sqrt{a}-6\sqrt{a}+2>0\Rightarrow-5\sqrt{a}>-2\Rightarrow0< \sqrt{a}< \frac{2}{5}\)

\(\Rightarrow0< a< \frac{4}{25}\)

djfhfirir
Xem chi tiết
Ngọc Vĩ
14 tháng 7 2016 lúc 22:06

1/ 

a/ ĐKXĐ: \(x\ge0\) và \(x\ne\frac{1}{9}\)

 b/  \(P=\left[\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-\left(3\sqrt{x}-1\right)+8\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}\right]:\left(\frac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\right)\)

    \(=\frac{3x-2\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}.\frac{3\sqrt{x}+1}{3}\)

      \(=\frac{3x+3\sqrt{x}}{3\sqrt{x}-1}.\frac{1}{3}=\frac{x+\sqrt{x}}{3\sqrt{x}-1}\)

c/ \(P=\frac{6}{5}\Rightarrow\frac{x+\sqrt{x}}{3\sqrt{x}-1}=\frac{6}{5}\Rightarrow6\left(3\sqrt{x}-1\right)=5\left(x+\sqrt{x}\right)\)

                  \(\Rightarrow5x-13\sqrt{x}+6=0\Rightarrow\left(5\sqrt{x}-3\right)\left(\sqrt{x}-2\right)=0\)

                   \(\Rightarrow\orbr{\begin{cases}\sqrt{x}=\frac{3}{5}\\\sqrt{x}=2\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{9}{25}\\x=4\end{cases}}}\)

                                                      Vậy x = 9/25 , x = 4

Hoàng Lê Bảo Ngọc
14 tháng 7 2016 lúc 22:06

1) a) ĐKXĐ :  \(0\le x\ne\frac{1}{9}\)

b) \(P=\left(\frac{\sqrt{x}-1}{3\sqrt{x}-1}-\frac{1}{3\sqrt{x}+1}+\frac{8\sqrt{x}}{9x-1}\right):\left(1-\frac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\)

\(=\left[\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}-\frac{3\sqrt{x}-1}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}+\frac{8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right]:\frac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\)

\(=\frac{3x-2\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}.\frac{3\sqrt{x}+1}{3}=\frac{3x+3\sqrt{x}}{3\left(3\sqrt{x}-1\right)}=\frac{x+\sqrt{x}}{3\sqrt{x}-1}\)

c) \(P=\frac{6}{5}\Leftrightarrow18\sqrt{x}-6=5x+5\sqrt{x}\Leftrightarrow5x-13\sqrt{x}+6=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{9}{25}\\x=4\end{cases}}\)

Hoàng Lê Bảo Ngọc
14 tháng 7 2016 lúc 22:14

2)a) \(P=\left(1-\frac{2\sqrt{a}}{a+1}\right):\left(\frac{1}{\sqrt{a}-1}-\frac{2\sqrt{a}}{a\sqrt{a}+\sqrt{a}-a-1}\right)\)

\(=\frac{a-2\sqrt{a}+1}{a+1}:\frac{a+1-2\sqrt{a}}{\left(a+1\right)\left(\sqrt{a}-1\right)}=\frac{\left(\sqrt{a}-1\right)^2}{a+1}.\frac{\left(a+1\right)\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)^2}=\sqrt{a}-1\)

b) \(19-8\sqrt{3}=\left(\sqrt{3}-4\right)^2\Rightarrow P=\sqrt{\left(\sqrt{3}-4\right)^2}-1=4-\sqrt{3}-1=3-\sqrt{3}\)

c) P < 1 <=> \(\sqrt{a}-1< 1\Leftrightarrow a< 4\)

Kết hợp với điều kiện : \(P< 1\Leftrightarrow\hept{\begin{cases}0< a< 4\\a\ne1\end{cases}}\)

ngo tinh
Xem chi tiết