Tìm các giá trị của a sao cho biểu thức sau có giá trị bằng 2.
2a-9/2a-5 +3a/3a-2
Với giá trị nào của a để các biểu thức sau có giá trị bằng 2 ?
a) 2a-9/2a-5 + 3a/3a-2
b)3a+2/3a+4 + a-2/a+4
a) \(\frac{2a-9}{2a-5}+\frac{3a}{3a-2}=2\)
<=> (2a - 9)(3a - 2) + 3a(2a - 5) = 2(2a - 5)(3a - 2)
<=> 6a2 - 4a - 27a + 16 + 6a2 - 15a = 12a2 - 8a - 30a + 20
<=> 12a2 - 44a + 16 = 12a2 - 38a + 20
<=> 12a2 - 44a + 16 - 12a2 = -38a + 20
<=> -44a + 16 = -36a + 20
<=> -44a + 16 + 36a = 20
<=> -8a + 16 = 20
<=> -8a = 20 - 16
<=> -8a = 4
<=> a = -4/8 = -1/2
b) nhân chéo và làm tương tự
Tìm các giá trị của a sao cho biểu thức sau có giá trị bằng 2: 3 a - 1 3 a + 1 + a - 3 a + 3
Tìm a thuộc Z sao cho giá trị biểu thức 3a-5 /2a-9 có giá trị nguyên
Biểu thức nguyên khi 3a-5 chia hết cho 2a-9
=> 2(3a-5) chia hết cho 2a-9
2(3a-5)=6a-10=6a-27+17=3(2a-9)+17
=> 3a-5 chia hết cho 2a-9 khi 17 chia hết cho 2a-9. Có các TH:
+/ 2a-9=1 => a=10/2=5
+/ 2a-9=-1 => a=8/2=4
+/ 2a-9=17 => a=26/2=13
+/ 2a-9=-17 => a=-8/2=-4
ĐS: a={-4; 4; 5; 13}
Bài 1: Cho số hữu tỉ x = a - 5 ( a khác 0 )
Với giá trị nguyên nào của a thì x có giá trị nguyên
Bài 2: Tìm giá trị nguyên của a để các biểu thức sau có giá trị nguyên
A= 3a + 9/a - 4 B= 6a + 5/ 2a - 1
ta thấy rằng 5 phải chia hết cho a tức là
a(U)5=1,-1;5,-5
vậy a 1,-1,5,-5 thì x có giá trị nguyên
1) Tìm a thuộc Z sao cho giá trị biểu thức 3a-5 /2a-9 có giá trị nguyên
Tìm các giá trị của a sao cho mỗi biểu thức có giá trị bằng 2
a) \(\frac{2a^2-3a-2}{a^2-4}\)
b)\(\frac{3a-1}{3a+1}+\frac{a-3}{a+3}\)
Tìm các giá trị ủa a sao cho mỗi biểu thức sau có giá trị bằng 2:
a) \(\frac{2a^2-3a-2}{a^2-4}\) b) \(\frac{3a-1}{3a+1}+\frac{a-3}{a+3}\)
a) \(\frac{2a^2-3a-2}{a^2-4}=2\)
\(\Rightarrow2a^2-3a-2=2\left(a^2-4\right)\)
\(\Rightarrow2a^2-3a-2=2a^2-4\)
\(\Rightarrow-3a-2=-4\)
\(\Rightarrow-3a=-2\Rightarrow a=\frac{2}{3}\)
b) \(\frac{3a-1}{3a+1}+\frac{a-3}{a+3}=2\)
\(\Rightarrow\frac{\left(3a-1\right)\left(a+3\right)+\left(3a+1\right)\left(a-3\right)}{\left(3a+1\right)\left(a+3\right)}=2\)
\(\Rightarrow\frac{6a^2-6}{3a^2+10a+3}=2\)
\(\Rightarrow6a^2-6=2\left(3a^2+10a+3\right)\)
\(\Rightarrow6a^2-6=6a^2+20a+6\)
\(\Rightarrow-6=20a+6\Rightarrow20a=-12\)
\(\Rightarrow a=\frac{-3}{5}\)
a, \(\frac{2a^2-3a-2}{a^2-4}=2\)
\(\Leftrightarrow\frac{a\left(2a+1\right)-2\left(2a+1\right)}{a^2-4}=2\)
\(\Leftrightarrow\frac{\left(a-2\right)\left(2a+1\right)}{a^2-2^2}=2\)
\(\Leftrightarrow\frac{\left(a-2\right)\left(2a+1\right)}{\left(a-2\right)\left(a+2\right)}=2\)
\(\Leftrightarrow\frac{2a+1}{a+2}=2\)
\(\Leftrightarrow2a+1=2\left(a+2\right)\Leftrightarrow2a+1=2a+4\Leftrightarrow2a+1-2a-4=0\)
\(\Leftrightarrow-3\ne0\)(voli)
b, \(\frac{3a-1}{3a+1}+\frac{a-3}{a+3}=2\)
\(\Leftrightarrow\frac{\left(3a-1\right)\left(a+3\right)}{\left(3a+1\right)\left(a+3\right)}+\frac{\left(a-3\right)\left(3a+1\right)}{\left(a+3\right)\left(3a+1\right)}=\frac{2\left(3a+1\right)\left(a+3\right)}{\left(3a+1\right)\left(a+3\right)}\)
\(\Leftrightarrow\left(3a-1\right)\left(a+3\right)+\left(a-3\right)\left(3a+1\right)=2\left(3a+1\right)\left(a+3\right)\)
\(\Leftrightarrow6a^2-6=6a^2+20a+6\)
\(\Leftrightarrow6a^2-6-6a^2-20a-6=0\)
\(\Leftrightarrow-12-20a=0\)
\(\Leftrightarrow20a=-12\)
\(\Leftrightarrow a=-\frac{3}{5}\)
Tìm các giá trị của a sao cho biểu thức sau có giá trị bằng 2: 10 3 - 3 a - 1 4 a + 12 - 7 a + 2 6 a + 18
Với giá trị nào của a để các b.thức sau có giá trị = 2:
a) \(\dfrac{3a-1}{3a+1}\) + \(\dfrac{a-3}{a+3}\)
b) \(\dfrac{2a-9}{2a-5}\) + \(\dfrac{3a}{3a-2}\)
c) \(\dfrac{10}{3}\) - \(\dfrac{3a-1}{4a+12}\) - \(\dfrac{7a+2}{6a+18}\)