Giải bài toán tìm số nguyên x,y sao cho: (x+3)^2 +(y+17)^2=0
tìm số nguyên x,y biet
a) (2x-5)*(y-6)=17
b) (x+3) (y+2)=5
giúp mình giải bài toán này nha
Tìm số nguyên x;y sao cho(x+3)^2+(y+17)^2=0
Ta có; \(\left(x+3\right)^2\ge0lđ;\left(y+17\right)^2\ge0lđ\)
=>x+3=0 và y+17=0
=>x=-3 và y=-17
học tốt
Bài 1: Tìm số nguyên χ biết:
a) (χ+3)(χ+2)=0
b) (7-3χ)3=(-8)
Bài 2: Tìm tất cả các số nguyên x;y;z;t biết:
|x+y+z+9|=|y+z+t+6|=|z+t+x-9|=|t+x+y-6|=0
Bài 3: Tìm ba cặp số nguyên (a;b) sao cho 20a+10b=2010
Bài 1
a) (x + 3)(x + 2) = 0
x + 3 = 0 hoặc x + 2 = 0
*) x + 3 = 0
x = 0 - 3
x = -3 (nhận)
*) x + 2 = 0
x = 0 - 2
x = -2 (nhận)
Vậy x = -3; x = -2
b) (7 - x)³ = -8
(7 - x)³ = (-2)³
7 - x = -2
x = 7 + 2
x = 9 (nhận)
Vậy x = 9
Bài 3
20a + 10b = 2010
10b = 2010 - 20a
b = (2010 - 20a) : 10
*) a = 0
b = (2010 - 20.0) : 10 = 201
*) a = 1
b = (2010 - 10.1) : 10 = 200
*) a = 2
b = (2010 - 10.2) : 10 = 199
Vậy ta có ba cặp số nguyên (a; b) thỏa mãn:
(0; 201); (1; 200); (2; 199)
cái gì thế này???????????????????????????????????
mik lp 6 nhưng nhìn bài của bn mik ko hiểu j cả luôn ý
Nhờ mọi người giải bài toán này giúp mình nha
Tìm x ,y thuộc Z và x,y >0 sao cho:
28x = 3( x^2 + 3y^2)
Bài 1 : Cho phép toán (*) xác định bởi a * b = 1- a/b (b > 0 )
Tìm x,y nguyên dương thoả mãn ( 3 * x ) = ( 2*y ) + ( 5*4)
Giải júp nhanh mình tích cho
bài 1 : tìm giá trị nhỏ nhất của các biểu thức
a) A = 2xmũ2 - 15 b) B= 2(x + 1) mũ 2 - 17
bài 2 : tìm các số nguyên X và Y sao cho
(x + 1 ) mũ 2 +(y+1)mũ2 + ( x-y )mũ2 = 2
bài 3 : tìm số nguyên X biết
(x mũ 2-8 )(xm mũ 2 - 15)<0
1/ a) \(A=\left(2x\right)^2-15\)
Vì \(\left(2x\right)^2\ge0\)\(\Rightarrow\)\(\left(2x\right)^2-15\ge-15\)
\(\Rightarrow A_{min}=-15\Rightarrow\left(2x\right)^2=0\Rightarrow2x=0\Rightarrow x=0\)
Vậy GTNN của A = -15 khi x = 0
Nhờ mọi người giải giúp mình bài toán này với ạ :
Tìm x,y nguyên biết : x^2 +2xy +x+ y^2+4y =0
chừng có ai trả lời đc báo mình với nha
Bài 1 : Tìm các số tự nhiên \(x\) thoả mãn : \(2^x+3^x=35\)
Bài 2 : Tìm \(x;y\inℤ^+\) thoả mãn : \(x!+y!=\left(x+y\right)!\)
Bài 3 : Chứng minh rằng phương trình sau không có nghiệm nguyên :
\(x^{17}+y^{17}=19^{17}\)
Bài 1: Bài này số nhỏ nên chỉ cần chặn miền giá trị của \(x\) rồi xét các trường hợp thôi nhé. Ta thấy \(3^x< 35\Leftrightarrow x\le3\). Nếu \(x=0\) thì \(VT=2\), vô lí. Nếu \(x=1\) thì \(VT=5\), cũng vô lí. Nếu \(x=2\) thì \(VT=13\), vẫn vô lí. Nếu \(x=3\) thì \(VT=35\), thỏa mãn. Vậy, \(x=3\).
Bài 2: Nếu \(x=0\) thì pt đã cho trở thành \(0!+y!=y!\Leftrightarrow0=1\), vô lí,
Nếu \(x=y\) thì pt trở thành \(2x!=\left(2x\right)!\) \(\Rightarrow\left(x+1\right)\left(x+2\right)...\left(2x\right)=2\) \(\Leftrightarrow x=1\Rightarrow y=1\)
Nếu \(x\ne y\) thì không mất tính tổng quát, giả sử \(1< y< x\) thì \(x!+y!< 2x!\le\left(x+1\right)x!=\left(x+1\right)!< \left(x+y\right)!\) nên pt đã cho không có nghiệm trong trường hợp này.
Như vậy, \(x=y=1\)
Bài 3: Bổ sung đề là pt không có nghiệm nguyên dương nhé, chứ nếu nghiệm nguyên thì rõ ràng \(\left(x,y\right)=\left(0,19\right)\) là một nghiệm cũa pt đã cho rồi.
Giả sử pt đã cho có nghiệm nguyên dương \(\left(x,y\right)\)
Khi đó \(x,y< 19\). Không mất tính tổng quát ta có thể giả sử \(1< y\le x< 19\). Khi ấy \(x^{17}+y^{17}=19^{17}\ge\left(x+1\right)^{17}=x^{17}+17x^{16}+...>x^{17}+17x^{16}\), suy ra \(y^{17}>17x^{16}\ge17y^{16}\) \(\Rightarrow y>17\). Từ đó, ta thu được \(17< y\le x< 19\) nên \(x=y=18\). Thử lại thấy không thỏa mãn.
Vậy pt đã cho không có nghiệm nguyên dương.
Chị độc giải sau khi em biết làm thôi à.