Cho tam giác DEF có DE < DF . Vẽ DM là tia phân giác của góc EDF . C/m EM < MF
Cho tam giác DEF có DE < DF . Vẽ DM là tia phân giác của góc EDF . C/m EM < MF
Xét \(\Delta DEM\)và \(\Delta DFM\)có
\(DE< DF\left(gt\right)\)
=> \(\Delta DEM< \Delta DFM\)
=> \(EM< MF\)( đpcm )
Bài làm
Kẻ đường cao DH
Diện tích tam DME là:
SDME = 1/2 . DH . EM
Diện tích tam giác DMF có:
SDMF = 1/2 . DH . MF
Mà DE thuộc tam giác DME
DF thuộc tam giác DMF
Và DE < DF
=> SDME < SDMF
=> EM < MF ( đpcm )
# Bạn xem hình trong thống kê của mik nhé #
Vì DF > DE => Có thể lấy điểm N thuộc DF sao cho DN = DE
Xét \(\Delta\)DME và \(\Delta\)DMN có:
DE = DN
DM chung
^EDM = ^NDM
=> \(\Delta\)DME = ^\(\Delta\)DMN (1)
=> ^E1 = ^N1 => ^E2 = ^N2 ( các góc kề bù ) mà ta có: ^E2 = ^DFE + ^EDF > ^DFE => ^N2 > ^DFE
hay ^MNF > ^NFM xét trong \(\Delta\)MNF => MF > MN
Mặt khác (1) => MN = EM
=> MF > EM
Cho tam giác DEF, DM là tia phân giác của góc EDF, biết DE=- 5cm, EM=4cm, MF=8cm, Tính DF
Sửa đề: DE=5cm
Xét ΔDEF có DM là đường phân giác ứng với cạnh EF(gt)
nên \(\dfrac{DE}{EM}=\dfrac{DF}{MF}\)(Tính chất đường phân giác của tam giác)
\(\Leftrightarrow\dfrac{DF}{8}=\dfrac{5}{4}\)
hay DF=10(cm)
Vậy: DF=10cm
Cho tam giác DEF có DE=6cm; DF= 8cm và EF=10cm. Vẽ tia phân giác góc E cắt cạnh DF tại M.Trên cạnh EF lấy điểm N sao cho:EN=ED.Đường thẳng MN cắt đường thẳng DE tại I.
a,C/m: tam giác DEF là tam giác vuông.
b,C/m: MN vuông góc vs EF.So sánh DM và MF
c,Gọi P.Q lần lượt là trung điểm của DN và IF.C/m:P,M,Q thẳng hàng.
Giúp tớ gấp nha1!
Cho tam giác DEF có DE=6cm; DF= 8cm và EF=10cm. Vẽ tia phân giác góc E cắt cạnh DF tại M.Trên cạnh EF lấy điểm N sao cho:EN=ED.Đường thẳng MN cắt đường thẳng DE tại I.
a,C/m: tam giác DEF là tam giác vuông.
b,C/m: MN vuông góc vs EF.So sánh DM và MF
c,Gọi P.Q lần lượt là trung điểm của DN và IF.C/m:P,M,Q thẳng hàng.
Giúp tớ gấp nha1!
Cho tam giác DEF có DE=6cm; DF= 8cm và EF=10cm. Vẽ tia phân giác góc E cắt cạnh DF tại M.Trên cạnh EF lấy điểm N sao cho:EN=ED.Đường thẳng MN cắt đường thẳng DE tại I.
a,C/m: tam giác DEF là tam giác vuông.
b,C/m: MN vuông góc vs EF.So sánh DM và MF
c,Gọi P.Q lần lượt là trung điểm của DN và IF.C/m:P,M,Q thẳng hàng.
Giúp tớ gấp nha1!
Hình vẽ tớ có lẽ vẽ hơi chi tiết về phần bằng nhau hay vuông góc nhỉ ???? Nếu không nhìn thấy rõ thì bảo tớ vẽ lại nhé ;)
a)
Theo đề ra, ta có: ED= 6 (cm) => \(ED^2=6^2=36\)
DF=8(cm) => \(DF^2=8^2=64\)
EF=10(cm) => \(EF^2=10^2=100\)
Ta thấy: 100= 36+64 => \(EF^2=DE^2+DF^2\)
=> Tam giác EDF vuông tại D (theo định lý Py-ta-go đảo)
b)
*) Xét \(\Delta EDM\) và \(\Delta ENM\), có:
ED=EN(gt)
\(\widehat{E_1}=\widehat{E_2}\)
Chung EM.
=> \(\Delta EDM=\Delta ENM\left(c.g.c\right)\) ( còn có cách g.c.g nữa )
=> \(\widehat{EDM}=\widehat{ENM}\) và DM=MN mà \(\widehat{EDM}=90^o\)
=> \(\widehat{ENM}=90^o\) => MN vuông góc với EF.
*) Trong tam giác NMF vuông tại N => Góc N là góc lớn nhất trong tam giác đó => MF là cạnh lớn nhất => MF>MN.
Mà MN=DM => MF>DM.
c) Lấy điểm giao nhau của EM và DN là P'
Xét tam giác EDP' và tam giác ENP', ta có:
ED=EN
\(\widehat{E_1}=\widehat{E_2}\)
Chung EP'
=> \(\Delta EDP'=\Delta ENP'\left(c.g.c\right)\)
=> DP'=P'N => P' là trung điểm của đoạn thẳng DN mà P cũng là trung điểm của đoạn thẳng DN nên P và P' trùng nhau.
Đồng thời P và M cùng nằm trên tia phân giác của góc E.(1)
*) Nối điểm E-> Q ( phải nối vì ta chưa chứng minh được Q thuộc tia phân giác góc E ý mà)
Xét tam giác DMI và tam giác NMF.
\(\widehat{D}=\widehat{N}\left(=90^o\right)\)
DM=MN
\(\widehat{M_1}=\widehat{M_2}\) (góc đối đỉnh)
=> \(\Delta DMI=\Delta NMF\left(g.c.g\right)\)
=> DI=NF và ED=EN => DI+DE=FN+FE =>IE=FE
Xét tam giác EQI và tam giác EQF.
IE=FE
Chung EQ
IQ=QF( do Q là trung điểm của IF)
=> \(\Delta EIQ=\Delta EFQ\left(c.c.c\right)\) => \(\widehat{E_1}=\widehat{E_2}\) => Q thuộc tia phân giác của góc E (2)
Từ (1) và (2) => P,M,Q thẳng hàng......
p/s: Nếu cậu thích thì có thể không làm theo dạng xét tam giác mà áp dụng tính chất tia phân giác của góc hay đại loại là thế mà làm .....
Sr về cái hình nha ..... cái hình đánh dấu cái không đáng :p
Cho tam giác DEF có DE=6cm, DF=8cm, EF=10cm. Vẽ tia phân giác của góc E cắt cạnh DF tại M. Trên cạnh EF lấy điểm N sao cho EN=ED. Đường thẳng NM cắt đường thẳng DE tại I.
a) Chứng minh tam giác DEF là tam giác vuông
b) MN vuông góc EF rồi so sánh DM và MF
c) Gọi P, Q lần lượt là trung điểm của DN và IF. Chứng minh 3 điểm P, M, Q thẳng hàng
a/ Vì EF2=DE2+DF2 (Pytago)
=> Tam giác DEF vuông tại D
Cho tam giác DEF có DE DF tia phân giác của góc EDF cắt EF tại điểm MA Chứng minh tam giác DEM bằng tam giác FDMB vẽ MH vuông góc với DE tại H, DK vuông góc với DF tại K Chứng minh tam giác DMH bằng tam giác DMK
Bài 7: Cho tam giác DEF cân tại D, DI là phân giác của EDF (I thuộc EF). Gọi N là trung điểm của
IF. Vẽ điểm M sao cho N là trung điểm của DM. Chứng minh rằng:
1) ADIN = AMFN và MF 1 EF.
2) Cho DE = 8cm, EF = 12cm. Tính độ dài đoạn thẳng FM.
3) DF > MF và IDN > NDF.
4) Gọi K là trung điểm của ME. Chứng minh D, I, K thẳng hàng
1: Xét ΔDIN và ΔMFN có
ND=NM
\(\widehat{DNM}=\widehat{MNF}\)
NI=NF
Do đó: ΔDIN=ΔMFN
Suy ra: DI=FM
mà DI<DF
nên FM<DF
2: EF=12cm nên IF=6cm
\(\Leftrightarrow DI=FM=\sqrt{8^2-6^2}=2\sqrt{7}\left(cm\right)\)
Cho tam giác ABC có góc A = 120 độ, các tia phân giác AD, BE, CF
a) CM: DE là tia phân giác góc ngoài của tam giác ADB
b) Tính góc EDF
c) Cho DE = 21 cm, DF = 20cm. Tính chu vi tam giác DEF