Cho tam giác ABC có:AB=6cm AC=8cm tia phân giác của góc A cắt cạnh BC tại D Chứng minh ABD < ADC
cho tam giác ABC có ab= 6cm, AC= 8cm , tia phân giác của góc A cắt BC tại D. Chứng minh ragừ góc ADb< góc ADC
AB<AC nên góc B>góc C
góc ADB=góc DAC+góc C
góc ADC=góc DAB+góc B
mà góc DAC=góc DAB, góc C<góc B
nên góc ADB<góc ADC
cho tam giác abc vuông tại a có ab=6cm ac=8cm. tính bc. kẻ tia phân giác góc b cắt ac tại d , kẻ dc vương góc bc. chứng minh abd=ebd . với góc c=30 độ chứng minh tam giác abe là tam giác dều
a: \(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
c: Xét ΔABE có BA=BE
nên ΔBAE cân tại B
mà \(\widehat{ABE}=60^0\)
nên ΔBAE đều
cho tam giác ABC vuông tại A có AB = 6cm AC = 8cm
a) tính độ dài cạnh BC
b) vẽ tia phân giác BD của góc ABC ( D thuộc AC ) từ D vẽ DE vuông góc với BC ( E thuộc BC ) chứng minh tam giác ABD=tam giác EBD
c)chứng minh BD là đường trung trực của đoạn thẳng FC
Các bạn chỉ cần làm giúp mình câu 3 thôi nhéa) Xét △ABC vuông tại A có:
BC² = AC² + AB² (ĐL Pytago)
BC² = 8² + 6²
BC² = 100
BC = 10 cm
Vậy BC = 10 cm
b) Xét △ABD và △EBD có:
góc BAD = góc BED (=90°)
BD chung
góc ABD = góc EBD (BD là tia p/g của góc ABC)
=> △ABD = △EBD (ch-gn)
c) Câu này đề bài có cho thiếu gia thiết ko bạn chứ vẽ hình chả biết ntn á
a) Xét △ABC vuông tại A có:
BC² = AC² + AB² (ĐL Pytago)
BC² = 8² + 6²
BC² = 100
BC = 10 cm
Vậy BC = 10 cm
b) Xét △ABD và △EBD có:
góc BAD = góc BED (=90°)
BD chung
góc ABD = góc EBD (BD là tia p/g của góc ABC)
=> △ABD = △EBD (ch-gn)
cre baji
cho tam giác ABC vuông tại A , BD là tia phân giác góc ABC ( D thuộc AC ) . Kẻ DK vuông góc BC ( K thuộc BC ) a.chứng minh tan giác ABD bằng tam giác KBD b.biết AB = 8cm , AC = 6cm . tính DK , BD c.tia LD và tia BA cắt nhau tại M . chứng minh tam giác DMC cân d.chứng minh AK//MC
a) Xét ΔABD vuông tại A và ΔKBD vuông tại K có
BD chung
\(\widehat{ABD}=\widehat{KBD}\)(BD là tia phân giác của \(\widehat{ABK}\))
Do đó: ΔABD=ΔKBD(Cạnh huyền-góc nhọn)
cho tam giác ABC vuông tại A biết AB=6cm,AC=8cm. a)tính BC b)tia phân giác của góc B cắt cạnh AC tại D kẻ DE vuông góc BC(E thuộc BC) gọi K là giao điểm của tia ED và đường thẳng AB chứng minh tam giác ABD = tam giác EBD c)chứng minh tam giác KDC cân d)kẻ AH vuông góc CK(H thuộc CK) và tia BD cắt CK tại I chứng minh AH song song BI
làm ơn giúp mik với mik đang gấp
Cho tam giác ABC vuông ở A biết AB = 8cm AC = 6cm, tia phân giác của góc A cắt cạnh huyền tại điểm D từ D kẻ đường thẳng vuông góc với AC cắt AB tại H chứng minh rằng a, tính độ dài BC b, chứng minh tam giác ABC đồng dạng với tam giác HDC c, tính tỉ số BD và DC tính tỉ số diện tích của tam giác ADH và tam giác ADC
a: \(BC=\sqrt{8^2+6^2}=10\left(cm\right)\)
b: Sửa đề: vuônggóc BC, cắt AC tại H
Xet ΔCDH vuông tại D và ΔCAB vuông tại A có
góc C chung
=>ΔCDH đồng dạng với ΔCAB
c: BD/DC=AB/AC=4/3
Cho tam giác ABC vuông tại A có AB = 6cm ,AC =8cm . Đường phân giác của góc ABC cắt AC tại D .Kẻ DE vuông góc với BC tại E . Tia BA cắt tua ED tại F
a) Tính độ dài cạnh BC và song song các góc của tam giác ABC
b)Chứng minh tam giác BAD = tam giác BED và tam giác BAE cân
c)Chứng minh EF=AC và tính độ dài đoạn thẳng CF ( làm tròn đến chứ số thập phân thứ 2)
d)Chứng minh AE song song với CF và AEF=ACF
a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
Xét ΔABC có AB<AC<BC
nên \(\widehat{C}< \widehat{B}< \widehat{A}\)
b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
DO đó: ΔBAD=ΔBED
Suy ra: BA=BE
hay ΔBAE cân tại B
Cho Tam giác ABC vuông tại A ,có AB=6cm,AC=8cm
a)Tính độ dài cạnh BC và chu vi hình tam giác ABC
b)Đường phân giác của góc B cắt AC tại D.Vẽ DH(vuông góc)B(H thuộc BC)
Chứng minh:tam giác ABD = HBD
c)Chứng minh DA <DC
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Chu vi tam giác ABC là:
\(C_{ABC}=AB+AC+BC=6+8+10=24\left(cm\right)\)
b) Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔABD=ΔHBD(Cạnh huyền-góc nhọn)
c) Ta có: ΔABD=ΔHBD(cmt)
nên DA=DH(hai cạnh tương ứng)
mà DH<DC(ΔDHC vuông tại H)
nên DA<DC
Cho tam giác ABC có góc B = 80 độ; C = 40 độ. Tia phân giác của góc A cắt BC ở D.
a) Tính góc BAC, góc ADC.
b) Gọi E là một điểm trên cạnh AC sao cho AE = AB. Chứng minh: tam giác ABD = tam giác AED
c) Tia phân giác của góc B cắt AC tại I. Chứng minh BI // DE