Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Thị Mai Anh
Xem chi tiết
Trần Thị Linh
7 tháng 3 2017 lúc 21:37

Bạn học  công thức delta chưa?

VRCT_Mối Tình Mùa Đông_S...
Xem chi tiết
Nguyễn Thành Long
15 tháng 3 2017 lúc 21:35

Vì | x -3 | > hoặc = 0

Suy ra : |x-3|+50 >hoặc =50

Vì A nhỏ nhất suy ra | x-3 | +50 =50

Suy ra x-3 =0

Suy ra x=3

Vậy GTNN của A = 50 khi x=3

Lê Bảo Ngọc
Xem chi tiết
Shaaaaaa
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 9 2021 lúc 14:24

Ta có: \(P=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{2\left(x+\sqrt{x}\right)}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)

\(=x+\sqrt{x}-2\left(\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)\)

\(=x+\sqrt{x}\)

Nguyễn Hoàng Huyền Trân
Xem chi tiết
nguyen tien hung
Xem chi tiết
Vo Ngoc Bao Trinh
Xem chi tiết
hya_seije_jaumeniz
25 tháng 7 2018 lúc 17:24

a) Đặt  \(A=-x^2+9x-12\)

\(-A=x^2-9x+12\)

\(-A=\left(x^2-9x+\frac{81}{4}\right)-\frac{33}{4}\)

\(-A=\left(x-\frac{9}{2}\right)^2-\frac{33}{4}\)

Mà  \(\left(x-\frac{9}{2}\right)^2\ge0\forall x\)

\(\Rightarrow-A\ge-\frac{33}{4}\Leftrightarrow A\le\frac{33}{4}\)

Dấu "=" xảy ra khi :  \(x-\frac{9}{2}=0\Leftrightarrow x=\frac{9}{2}\)

Vậy  \(A_{Max}=\frac{33}{4}\Leftrightarrow x=\frac{9}{2}\)

b) Đặt \(B=2x^2+10x-1\)

\(B=2\left(x^2+5x+\frac{25}{4}\right)-\frac{29}{4}\)

\(B=2\left(x+\frac{5}{2}\right)^2-\frac{29}{4}\)

Mà  \(\left(x+\frac{5}{2}\right)^2\ge0\forall x\Rightarrow2\left(x+\frac{5}{2}\right)^2\ge0\forall x\)

\(\Rightarrow B\ge-\frac{29}{4}\)

Dấu "=" xảy ra khi :  \(x+\frac{5}{2}=0\Leftrightarrow x=-\frac{5}{2}\)

Vậy  \(B_{Min}=-\frac{29}{4}\Leftrightarrow x=-\frac{5}{2}\)

hya_seije_jaumeniz
25 tháng 7 2018 lúc 17:30

c) Đặt  \(C=\left(2x+6\right)\left(x-1\right)\)

\(C=2x^2-2x+6x-6\)

\(C=2x^2+4x-6\)

\(C=2\left(x^2+2x+1\right)-8\)

\(C=2\left(x+1\right)^2-8\)

Mà  \(\left(x+1\right)^2\ge0\forall x\Rightarrow2\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow C\ge-8\)

Dấu "=" xảy ra khi :  \(x+1=0\Leftrightarrow x=-1\)

Vậy  \(C_{Min}=-8\Leftrightarrow x=-1\)

d) Đặt  \(D=3x-2x^2\)

\(-2D=4x^2-6x\)

\(-2D=\left(4x^2-6x+\frac{9}{4}\right)-\frac{9}{4}\)

\(-2D=\left(2x-\frac{3}{2}\right)^2-\frac{9}{4}\)

Mà  \(\left(2x-\frac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow-2D\ge-\frac{9}{4}\)

\(\Leftrightarrow D\le\frac{9}{8}\)

Dấu "=" xảy ra khi :  \(2x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{4}\)

Vậy  \(D_{Max}=\frac{9}{8}\Leftrightarrow x=\frac{3}{4}\)

dũng
Xem chi tiết
Trà My
2 tháng 10 2017 lúc 15:55

\(2017-4x-x^2=2021-\left(x^2+4x+4\right)=2021-\left(x+2\right)^2\le2021\)

dấu "=" xảy ra khi x=-2

vậy gtln của biểu thức là 2021 khi x=-2

Phạm Quang Anh
Xem chi tiết
»βέ•Ҫɦαηɦ«
11 tháng 7 2017 lúc 20:33

Ta có : D = (x - 1).(x + 3).(x + 2).(x + 6)

=> D = [(x - 1)(x + 6)].[(x + 3).(x + 2)]

=> D = (x2 + 5x - 6) . (x2 + 5x + 6)

=> D = (x2 + 5x)2 - 36

=> D = [x(x + 5)]2 - 36

Mà : [x(x + 5)]​2  \(\ge0\forall x\)

Suy ra : D = [x(x + 5)]​2 - 36 \(\ge-36\forall x\)

Vậy Dmin = -36 , dấu "=" xẩy ra khi và chỉ khi x = 0 hoặc -5