Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hiền Kun's
Xem chi tiết
Nguyễn Khắc Quang
Xem chi tiết
Nobi Nobita
28 tháng 1 2021 lúc 21:06

Vì \(abc=2\)nên ta có:

\(M=\frac{a}{ab+a+2}+\frac{b}{bc+b+1}+\frac{2c}{ac+2c+2}\)

\(=\frac{a}{ab+a+abc}+\frac{b}{bc+b+1}+\frac{abc.c}{ac+abc.c+abc}\)

\(=\frac{a}{a\left(b+1+bc\right)}+\frac{b}{bc+b+1}+\frac{abc^2}{ac\left(1+bc+b\right)}\)

\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{bc+c+1}\)

\(=\frac{1+b+bc}{bc+c+1}=1\)

Khách vãng lai đã xóa
gấu zuka (siêu quậy)
28 tháng 1 2021 lúc 21:07

câu trả lời;

Khách vãng lai đã xóa
Đoàn Đức Hà
28 tháng 1 2021 lúc 21:08

\(M=\frac{a}{ab+a+2}+\frac{b}{bc+b+1}+\frac{2c}{ac+2c+2}\)

\(M=\frac{a}{ab+a+abc}+\frac{b}{bc+b+1}+\frac{abc.c}{ac+abc.c+abc}\)

\(M=\frac{1}{b+1+bc}+\frac{b}{bc+b+1}+\frac{bc}{1+bc+b}=1\)

Khách vãng lai đã xóa
bùi tiến long
Xem chi tiết
Hoàng thị yến Hoàng thị...
Xem chi tiết
dodo2003
Xem chi tiết
Lê Đình Thái
19 tháng 8 2017 lúc 10:06

a) Q=\(\left(\dfrac{2x+1}{\sqrt{x}^3-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\dfrac{1+\sqrt{x}^3}{1+\sqrt{x}}-\sqrt{x}\right)\)

=\(\left(\dfrac{2x+1-x+\sqrt{x}}{\sqrt{x}^3-1}\right)\left(\dfrac{1+\sqrt{x}^3-\sqrt{x}-x}{1+\sqrt{x}}\right)\)

=\(\dfrac{\sqrt{x}+x+1}{\sqrt{x}^3-1}.\left(-2\sqrt{x}+1\right)\)

=\(\dfrac{\left(-2\sqrt{x}+1\right)\left(\sqrt{x}+x+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)=\(\dfrac{\left(-2\sqrt{x}+1\right)}{\sqrt{x}-1}\)

b) ta có : Q=3 => \(\dfrac{-2\sqrt{x}+1}{\sqrt{x}-1}=3=>-2\sqrt{x}+1=3\sqrt{x}-3\)

=>x=16/25=0,64

vậy x=0,64 khi Q=3

Lê Đình Thái
25 tháng 8 2017 lúc 15:31

a) Q=\(\left(\dfrac{2x+1}{\sqrt{x^3}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\dfrac{1+\sqrt{x^3}}{1+\sqrt{x}}-\sqrt{x}\right)\)

=\(\dfrac{2x+1-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)-\sqrt{x}\left(1+\sqrt{x}\right)}{1+\sqrt{x}}\)

=\(\dfrac{2x+1-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1-\sqrt{x}\right)}{1+\sqrt{x}}\)

=\(\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\left(x-2\sqrt{x}+1\right)\)

=\(\dfrac{\left(x+\sqrt{x}+1\right)\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\sqrt{x}-1\)

b) ta có : Q=3 <=> \(\sqrt{x}-1=3\)

\(\Leftrightarrow\) \(\sqrt{x}=4\Leftrightarrow x=16\)

vậy để Q=3 thì x=16

Lê Đình Thái
25 tháng 8 2017 lúc 15:35

cái này ms đúng

nguyễn viết hạ long
Xem chi tiết
 .
Xem chi tiết
Trần Thanh Phương
25 tháng 9 2018 lúc 20:58

a) 

+) Nếu x > 0 thì A = x + x = 2x

+) Nếu x = 0 thì A = 0 + 0 = 0

+) Nếu x < 0 thì A = -x + x = 0

b) B = 2 ( 3x - 1 ) - | 5 - x |

B = 6x - 2 - | 5 - x |

Xét 3 t/h như câu a)

Việt Hoàng ( Tiếng Anh +...
25 tháng 9 2018 lúc 20:59

a)+) Nếu x > 0 thì A = x + x = 2x

+) Nếu x = 0 thì A = 0 + 0 = 0

+) Nếu x < 0 thì A = -x + x = 0

b) B = 2 ( 3x - 1 ) - | 5 - x |

B = 6x - 2 - | 5 - x |

Xét 3 t/h như câu a)

Nguyễn Lâm Tuệ Minh
Xem chi tiết
Capheny Bản Quyền
25 tháng 8 2020 lúc 22:38

a) 

\(\sqrt{18-6\sqrt{6}+3}\)        

\(\sqrt{\left(3\sqrt{2}\right)^2-2\cdot3\sqrt{2}\cdot\sqrt{3}+\left(\sqrt{3}\right)^2}\)       

\(\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}\)       

\(|3\sqrt{2}-\sqrt{3}|\)   

\(3\sqrt{2}-\sqrt{3}\)   

b) 

\(\sqrt{\frac{7}{2}-\sqrt{7}+\frac{1}{2}}\)   

\(\sqrt{\left(\sqrt{\frac{7}{2}}\right)^2+2\cdot\sqrt{\frac{7}{2}}\cdot\sqrt{\frac{1}{2}}+\left(\sqrt{\frac{1}{2}}\right)^2}\)    

\(\sqrt{\left(\sqrt{\frac{7}{2}}+\sqrt{\frac{1}{2}}\right)^2}\)     

\(|\sqrt{\frac{7}{2}}+\sqrt{\frac{1}{2}}|\) 

\(\sqrt{\frac{7}{2}}+\sqrt{\frac{1}{2}}\)        

c) 

\(\sqrt{3+2\sqrt{3}+1}\)  

\(\sqrt{\left(\sqrt{3}\right)^2+2\cdot\sqrt{3}\cdot1+1^2}\)    

\(\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\) 

d) 

Đặt t = \(\sqrt{x-1}\left(ĐK:t\ge0\right)\)   

\(\sqrt{t^2+1-2t}\)       

\(\sqrt{\left(t+1\right)^2}\)   

\(=t+1\)      

\(\sqrt{x-1}+1\)                     

Khách vãng lai đã xóa
Blackcoffee
25 tháng 8 2020 lúc 23:25

\(\sqrt{21-6\sqrt{6}}=\sqrt{18-2\sqrt{9}\sqrt{6}+3}=\sqrt{\left(\sqrt{18}\right)^2-2\sqrt{18}\sqrt{3}+\left(\sqrt{3}\right)^2}\)

                                \(=\sqrt{\left(\sqrt{18}+\sqrt{3}\right)^2}=\sqrt{18}+\sqrt{3}=\sqrt{3}+3\sqrt{2}\)

\(\sqrt{4-\sqrt{7}}=\frac{\sqrt{2}\sqrt{4-\sqrt{7}}}{\sqrt{2}}=\frac{\sqrt{8-2\sqrt{7}}}{\sqrt{2}}=\frac{\sqrt{7-2\sqrt{7}+1}}{\sqrt{2}}\)

                           \(=\frac{\sqrt{\left(\sqrt{7}-1\right)^2}}{\sqrt{2}}=\frac{\sqrt{7}-1}{\sqrt{2}}=\frac{\sqrt{14}-\sqrt{2}}{2}\)

\(\sqrt{4+2\sqrt{3}}=\sqrt{3+2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

Với \(x\ge1\)thì \(\sqrt{x-2\sqrt{x-1}}=\sqrt{\left(x-1\right)-2\sqrt{x-1}+1}\)

                                                                  \(=\sqrt{\left(\sqrt{x-1}\right)^2-2\sqrt{x-1}\sqrt{1}+\left(\sqrt{1}\right)^2}\)

                                                                  \(=\sqrt{\left(\sqrt{x-1}-1\right)^2}=\sqrt{x-1}-1\)

T đã tốn mấy phút cuộc đời viết lời giải cho bạn r, tiếc j mấy giây mà bấm k cho t ik =))

Khách vãng lai đã xóa
Lê Thị Tố Uyên
Xem chi tiết