a) Q=\(\left(\dfrac{2x+1}{\sqrt{x}^3-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\dfrac{1+\sqrt{x}^3}{1+\sqrt{x}}-\sqrt{x}\right)\)
=\(\left(\dfrac{2x+1-x+\sqrt{x}}{\sqrt{x}^3-1}\right)\left(\dfrac{1+\sqrt{x}^3-\sqrt{x}-x}{1+\sqrt{x}}\right)\)
=\(\dfrac{\sqrt{x}+x+1}{\sqrt{x}^3-1}.\left(-2\sqrt{x}+1\right)\)
=\(\dfrac{\left(-2\sqrt{x}+1\right)\left(\sqrt{x}+x+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)=\(\dfrac{\left(-2\sqrt{x}+1\right)}{\sqrt{x}-1}\)
b) ta có : Q=3 => \(\dfrac{-2\sqrt{x}+1}{\sqrt{x}-1}=3=>-2\sqrt{x}+1=3\sqrt{x}-3\)
=>x=16/25=0,64
vậy x=0,64 khi Q=3
a) Q=\(\left(\dfrac{2x+1}{\sqrt{x^3}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\dfrac{1+\sqrt{x^3}}{1+\sqrt{x}}-\sqrt{x}\right)\)
=\(\dfrac{2x+1-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)-\sqrt{x}\left(1+\sqrt{x}\right)}{1+\sqrt{x}}\)
=\(\dfrac{2x+1-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1-\sqrt{x}\right)}{1+\sqrt{x}}\)
=\(\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\left(x-2\sqrt{x}+1\right)\)
=\(\dfrac{\left(x+\sqrt{x}+1\right)\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\sqrt{x}-1\)
b) ta có : Q=3 <=> \(\sqrt{x}-1=3\)
\(\Leftrightarrow\) \(\sqrt{x}=4\Leftrightarrow x=16\)
vậy để Q=3 thì x=16