Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Nguyễn Thanh Trúc
Xem chi tiết
Đoàn Đức Hà
16 tháng 1 2021 lúc 18:17

1) \(A=\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=\frac{\left|x-2016\right|+2018-1}{\left|x-2016\right|+2018}=1-\frac{1}{\left|x-2016\right|+2018}\)

\(A\)nhỏ nhất nên \(\frac{1}{\left|x-2016\right|+2018}\)lớn nhất nên \(\left|x-2016\right|+2018\)dương nhỏ nhất. 

mà \(\left|x-2016\right|+2018\ge2018\)

Dấu \(=\)khi \(x=2016\).

Vậy \(minA=1-\frac{1}{2018}=\frac{2017}{2018}\)đạt tại \(x=2016\).

2) \(x-2xy+y=0\)

\(\Leftrightarrow x\left(1-2y\right)+\frac{1}{2}-y-\frac{1}{2}=0\)

\(\Leftrightarrow\left(2x+1\right)\left(1-2y\right)=1=1.1=\left(-1\right).\left(-1\right)\)

Từ đây xét 2 trường hợp nha. Ra kết quả cuối cùng là: \(\left(x,y\right)\in\left\{\left(0,0\right),\left(1,1\right)\right\}\).

Khách vãng lai đã xóa
ngo thao
Xem chi tiết
Hoàng Đình Đại
19 tháng 3 2018 lúc 15:19

\(\left|x-2016\right|+2017\)

giá tị nhỏ nhất là  2017 vì  \(\left|x-2016\right|\)có giá trị tuyêt đối nên lớn hơn hoặc bằng 0 

mà ở ngoài lại là +2017  nên biểu thức có giá trj = 0  suy ra 0+2017 =2017

biểu thức tiếp 

= 2018

Chi Ma Đậu
Xem chi tiết
Ngọc Anh Dũng
Xem chi tiết
Đức Lộc
24 tháng 8 2019 lúc 19:33

Có \(\left(x-y\right)^2\ge0\)

\(\Rightarrow\left(x+y\right)^2\ge4xy\)

\(\Rightarrow\left(x+y\right)^2\ge4\) (Vì xy = 1)

\(\Rightarrow|x+y|\ge2\)

Dấu "=" xả ra khi \(\orbr{\begin{cases}x=y=1\\x=y=-1\end{cases}}\)

Xét x = y = 1 ta được:

\(M=\frac{3}{4}+\left(\sqrt{5.1^{2016}+4.1}-2\right)^{2017}-\frac{1^{2015}}{1^{2016}}\)

\(M=\frac{3}{4}\)

Xét x = y = -1 ta được:

\(M=\frac{3}{4}+\left(\sqrt{5.\left(-1\right)^{2016}+4.\left(-1\right)}\right)^{2017}-\frac{\left(-1\right)^{2015}}{\left(-1\right)^{2016}}\)

\(M=\frac{7}{4}+3^{2017}\)

Vậy với \(xy=1\)và \(|x+y|\)đạt giá trị nhỏ nhất thì M nhận 2 giá trị là \(\orbr{\begin{cases}M=\frac{3}{4}\\M=\frac{7}{4}+3^{2017}\end{cases}}\)

Rinu
24 tháng 8 2019 lúc 19:33

Có |x+y| lớn hơn hoặc bằng 

|x|+|y| dấu bằng sảy ra <=>

xy lớn hơn hoặc bằng 0

mà xy=1 => |x+y|=|x|+|y| (1)

Ta lại có:|x|+|y|-2\(\sqrt{xy}=\)\(\left(\sqrt{x}-\sqrt{y}\right)^2\)Lớn hơn hoặc bằng 0

=>|x|+|y| lớn hơn hoặc bằng \(2\sqrt{xy}=2\left(2\right)\)

Từ (1) và (2)

=>|x+y| lớn hơn hoặc bằng 2

=>MIN |x+y|=2

Dấu bằng sảy ra 

<=>|x+y|=2

Hay |x|+|y|=\(2\sqrt{xy}\)

=>\(\left(\sqrt{x}-\sqrt{y}\right)^2=0\)

=>\(\sqrt{x}=\sqrt{y}\Rightarrow x=y\)

Mà |x+y|=2

TH1: x+y=2=>x=y=1

Thay vào M ta tính được M=3/4

TH2:x+y=-2 =>  x=y=-1

Thay vào M ta được

M=3/4

Vậy: M=3/4

Diệu Anh Hoàng
Xem chi tiết
Incursion_03
5 tháng 12 2018 lúc 22:32

ĐK: x khác 0

Từ\(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)

\(\Rightarrow x^2+2+\frac{1}{x^2}+x^2+xy+\frac{y^2}{4}=6+xy\)

\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+\left(x+\frac{y}{2}\right)^2=6+xy\)

Do VT > 0\(\Rightarrow6+xy\ge0\Rightarrow xy\ge6\)
Có A = 2016 + xy > 2016 + 6 = 2022

Incursion_03
29 tháng 1 2019 lúc 16:54

tth : Viết nhầm :V
Đoạn cuối \(6+xy\ge0\Rightarrow xy\ge-6\)

Có A = 2016 + xy > 2016 - 6 = 2010 !!!

Được rồi chứ gì -.- 

Incursion_03
29 tháng 1 2019 lúc 18:16

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+\frac{1}{x}=0\\x+\frac{y}{2}=0\end{cases}}\)

             \(\Leftrightarrow\hept{\begin{cases}x^2=1\\x=-\frac{y}{2}\end{cases}}\)

             \(\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\left(h\right)\hept{\begin{cases}x=-1\\y=2\end{cases}}\)OK ???

Subin
Xem chi tiết
Phùng Minh Quân
1 tháng 10 2018 lúc 17:09

\(A=\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}\)

\(A=\frac{\left|x-2016\right|+2018}{\left|x-2016\right|+2018}-\frac{1}{\left|x-2016\right|+2018}\)

\(A=1-\frac{1}{\left|x-2016\right|+2018}\ge1-\frac{1}{2018}=\frac{2017}{2018}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left|x-2016\right|=0\)

\(\Leftrightarrow\)\(x=2016\)

Vậy GTNN của \(A\) là \(\frac{2017}{2018}\) khi \(x=2016\)

Chúc bạn học tốt ~ 

Nguyễn Trịnh Hồng Hương
Xem chi tiết
Nguyễn Văn Hiếu
10 tháng 3 2016 lúc 21:13

\(\frac{2017}{2018}\)

Nguyễn Thị Hồng Thanh
10 tháng 3 2016 lúc 21:11

2017 

2018

Nguyễn Trịnh Hồng Hương
10 tháng 3 2016 lúc 21:42

Làm chi tiết cho tớ với

Vũ Thị Ánh Tuyết (TEAM C...
Xem chi tiết
⌛𝓢𝓸𝓵𝓸               ツ[...
5 tháng 7 2021 lúc 9:02

Để \(\text{M= 2017-2016:(2015-x)}\)đạt giá trị nhỏ nhất thì \(2016:\left(2015-x\right)\)đạt giá trị lớn nhất.

\(\Rightarrow2015-x=1\Rightarrow x=2014\)

\(\Rightarrow M=2017-2016:1=2017-2016=1\)

Vậy giá trị nhỏ nhất của M=1 khi x=2014.

Khách vãng lai đã xóa
Người lạnh lùng
Xem chi tiết
Đồng Thiên Ái ***
1 tháng 12 2018 lúc 20:50

123456789

Nguyệt
1 tháng 12 2018 lúc 21:18

\(A=\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=\frac{\left|x-2016\right|+2018-1}{\left|x-2016\right|+2018}=1-\frac{1}{\left|x-2016\right|+2018}\)

để A nhỏ nhất => \(\frac{1}{\left|x-2016\right|+2018}\)lớn nhất => |x-2016|+2018 nhỏ nhất

\(\left|x-2016\right|\ge0\Rightarrow\left|x-2016\right|+2018\ge2018\)

dấu = xảy ra khi |x-2016|=0

=> x=2016

Vậy Min A=\(\frac{2017}{2018}\)khi x=2016

ps: sai sót bỏ qua