Chứng minh rằng nếu a+b \(\ge\) 2 thì ít nhất 1 trong 2 pt sau có nghiệm :
x^2 +2x +b =0 ; x^2 +2bx +a =0
Chứng minh rằng: Nếu a+b\(\ge\)2 thì ít nhất một trong hai phương trình sau có nghiệm: \(x^2+2ax+b=0\)và \(x^2+2bx+a=0\)
Chứng minh rằng trong 2 PT sau có ít nhất 1 PT có nghiệm x^2-2ax-1+2b=0,x^2-2bx-1+2a=0
Cho 2 pt: x3-2x-a=0 ; x2+bx+a=0. Chứng minh ít nhất 1 pt có nghiệm
Phương trình bậc 3: x3 - 2x - a = 0 luôn luôn có ít nhất 1 nghiệm mà.
nếu a, b là các số dương hãy chứng minh phương trình \(\dfrac{a}{x^3+2x-1}+\dfrac{b}{x^3+x-2}=0\) có ít nhất 1 nghiệm nằm trong khoảng (-1;1)
Cho 2 phương trình :x^2+ax+1=0 và x^2+bx+1=0.Chứng minh rằng :Nếu ab>=4 thì tồn tại ít nhất một trong 2 phương trình đã có nghiệm .
x2+ax+1=0
Δ1=a²−4
x2+bx+1=0
Δ2=b²−4
Do ab≥4 nên có ít nhất 1 trong 2 số aa và b≥2
→ Hoặc Δ1=a²−4≥0
→ Hoặc Δ2=b²≥0
Cho pt: \(x^2-ax+a+1=0\) .
Chứng minh với a+b >=2 thì có ít nhất một trong hai phương trình sau đây có nghiệm : \(x^2+2ax+b=0\)và \(x^2+2bx+a=0\).
Cho a + b = 2. Cmr ít nhất 1 trong 2 pt sau có nghiệm. x2 + ax+b= 0, x+ 2bx+a =0
Cho hai phương trình ax2+bx+c=0(a khác 0) và mx2+nx+p=0 (m khác 0).Chứng minh rằng nếu ít nhất một trong hai phương trình trên vô nghiệm thì phương trình sau đây luôn có nghiệm (an-bm)x2 +2(ap-cm)x +bp-cn=0
Chứng minh rằng với a, b, c khác 0, ít nhất một trong các phương trình sau có nghiệm.
\(ax^2+2bx+c=0\),\(bx^2+2cx+a=0\),\(cx^2+2ax+b=0\)
\(\Delta_1'=b^2-ac\) ; \(\Delta_2'=c^2-ab\) ; \(\Delta_3'=a^2-bc\)
\(\Rightarrow\Delta_1'+\Delta_2'+\Delta_3'=a^2+b^2+c^2-ab-bc-ca\)
\(=\dfrac{1}{2}\left(a-b\right)^2+\dfrac{1}{2}\left(b-c\right)^2+\dfrac{1}{2}\left(c-a\right)^2\ge0\) ; \(\forall a;b;c\)
\(\Rightarrow\) Tồn tại ít nhất 1 trong 3 giá trị \(\Delta_1';\Delta_2';\Delta_3'\) không âm
\(\Rightarrow\) Ít nhất 1 trong 3 pt nói trên có nghiệm