Tính nhanh : (1/2019)^2020 . 2019^2019
2020*2018+2019
__________________
2019*2019+2018
Tính nhanh
Trả lời :...............................................
\(\frac{4078379}{4078379}\)
Hk tốt,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
k nhé Kim Râu La
Đề bài : Tính và so sánh hai phân số sau
E = \(\frac{2019^{2019}+1}{2019^{2020}+1}\)và F = \(\frac{2019^{2020}+1}{2019^{2021}+1}\)
Bạn nào làm nhanh và đúng thì mình sẽ tích cho bạn đó nhé
ta có :\(E=\frac{2019^{2019}+1}{2019^{2020}+1}\Leftrightarrow2019\cdot E=\frac{2019^{2020}+2019}{2019^{2020}+1}=1+\frac{2019}{2019^{2020}+1}\)
\(F=\frac{2019^{2020}+1}{2019^{2021}+1}\Leftrightarrow2019\cdot F=\frac{2019^{2021}+2019}{2019^{2021}+1}=1+\frac{2019}{2019^{2021}+1}\)
vì \(\frac{2019}{2019^{2020}+1}>\frac{2019}{2019^{2021}+1}\) nên E>F
E=2019 x 2019 x 2019 x ........ x 2019 x2019 +1 /2019 x 2019 x 2019 x.........x 2019 x 2019 + 1
E=1+1/2019+1
E=2/2020
E=1/1010
F=2019 x 2019 x 2019 x .......... x 2019 x 2019 +1 / 2019 x 2019 x 2019 x ....... x 2019 x 2019 +1
F= 1+1/2019+1
F=2/2020
F=1/1010
từ đó ta có E=F(=1/1010)
nghỉ sao rút gọn được vậy có dấu + mà(ví dụ\(\frac{2\cdot2+1}{2\cdot2\cdot2+1}=\frac{5}{9}\ne\frac{2}{3}\))
Cho A=1/2018+2/2019+3/2020+.....+2019/4036-2019 và B =1/2018+1/2019+1/2020+....+1/4036. CMR A/B là một số nguyên
Nhanh minh ticks cho
giúp em với, em sẽ tick ạ
Tính nhanh 2020/2019 - 2019/2018 + 1/2019 x 2018
\(\dfrac{2020}{2019}-\dfrac{2019}{2018}+\dfrac{1}{2019}x2018\)
\(=\dfrac{2020}{2019}-\dfrac{2019}{2018}+\dfrac{2018}{2019}=2-\dfrac{2019}{2018}=\dfrac{2017}{2018}\)
\(\dfrac{2020^{2018}-1}{2020^{2019}+2019}\)với B=\(\dfrac{2020^{2019}+1}{2020^{2020}+2019}\)
\(A=\dfrac{2020^{2018}-1}{2020^{2019}+2019}\)
\(B=\dfrac{2020^{2019}+1}{2020^{2020}+2019}\)
Ta có :
\(A-B=\dfrac{2020^{2018}-1}{2020^{2019}+2019}-\dfrac{2020^{2019}+1}{2020^{2020}+2019}\)
\(\Rightarrow A-B=\dfrac{\left(2020^{2018}-1\right)\left(2020^{2020}+2019\right)-\left(2020^{2019}+2019\right)\left(2020^{2019}+1\right)}{\left(2020^{2019}+2019\right)\left(2020^{2020}+2019\right)}\)
\(\Rightarrow A-B=\dfrac{2020^{4038}+2019.2020^{2018}-2020^{2020}-2019-2020^{4038}-2020^{2019}-2019.2020^{2018}-2029}{\left(2020^{2019}+2019\right)\left(2020^{2020}+2019\right)}\)
\(\Rightarrow A-B=\dfrac{-\left(2020^{2020}+2020^{2019}+2.2019\right)}{\left(2020^{2019}+2019\right)\left(2020^{2020}+2019\right)}\)
mà \(\left\{{}\begin{matrix}-\left(2020^{2020}+2020^{2019}+2.2019\right)< 0\\\left(2020^{2019}+2019\right)\left(2020^{2020}+2019\right)>0\end{matrix}\right.\)
\(\Rightarrow A-B< 0\)
\(\Rightarrow A< B\)
Vậy ta được \(A< B\)
so sanh A=2020^2018-1/2020^2019-2019 và B=2020^2019+1/2020^2020+2019
so sánh: A=2019^2019+1/2019^2020+1 và B=2019^2020+1/2019^2021+1
Vì 2019 + 2020 < 2019 + 2021 nên A < B
So sánh x = 20192020 + 1 / 20192019 + 1 và y = 20192019 + 2020 / 20192018 + 2020
\(x=\frac{2019^{2020}+1}{2019^{2019}+1}>\frac{2019^{2020}+1+2018}{2019^{2019}+1+2018}=\frac{2019^{2020}+2019}{2019^{2019}+2019}=\frac{2019\left(2019^{2019}+1\right)}{2019\left(2019^{2018}+1\right)}=\frac{2019^{2019}+1}{2019^{2018}+1}\)(1)
\(y=\frac{2019^{2019}+2020}{2019^{2018}+2020}< \frac{2019^{2019}+2020-2019}{2019^{2018}+2020-2019}=\frac{2019^{2019}+1}{2019^{2018}+1}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow x>y\)
So sánh :
A=2018×2019/2019×2019+1
B= 2019×2020/2019×2020+1