Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ImNotFound
Xem chi tiết
Vô danh
20 tháng 3 2022 lúc 10:21

Tham khảo:Câu hỏi của Tâm Lê Huỳnh Minh - Toán lớp 7 - Học trực tuyến OLM

Trần Phương Thảo
Xem chi tiết
Vũ Nam Khánh
Xem chi tiết
Hoàng Thị Thanh Huyền
2 tháng 4 2018 lúc 20:58

\(\frac{a}{b+c}>\frac{a}{a+b+c},\frac{b}{b+c}>\frac{b}{b+c+a},\frac{c}{c+a}>\frac{c}{c+a+b}\)

\(\Rightarrow A>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

\(\frac{a}{a+b}< 1\Rightarrow\frac{a}{a+b}< \frac{a+c}{a+b+c},\frac{b}{b+c}< 1\Rightarrow\frac{b}{b+c}< \frac{b+a}{b+c+a},\frac{c}{a+a}< 1\Rightarrow\frac{c}{c+a}< \frac{c+b}{c+a+b}\)

\(\Rightarrow A< \frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{c+a+b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

Vậy \(1< A< 2\Rightarrow A\)không phải là một số nguyên dương

Neymar jr
2 tháng 4 2018 lúc 20:15

bài này mình làm rồi

nguyễn hoàng mỹ dân
Xem chi tiết
Trần Thị Loan
10 tháng 7 2015 lúc 20:16

+ Vì a+ b + c > a + b => \(\frac{a}{a+b+c}

✓ ℍɠŞ_ŦƦùM $₦G ✓
10 tháng 7 2015 lúc 20:11

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

\(1

HaiZzZ
Xem chi tiết
.
18 tháng 3 2019 lúc 19:29

Ta có \(\frac{a}{a+b+c}\)\(\frac{a}{a+b+c+d}\)

       \(\frac{b}{b+c+a}\)\(\frac{b}{b+c+a+d}\)

        tương tự ....

suy ra cái đề > 1 dpcm

Vo Nhat Dong
10 tháng 5 2020 lúc 20:25

ko biet thi dung lam nhe con

Khách vãng lai đã xóa
Nguyễn Phan Quỳnh Hương
10 tháng 5 2020 lúc 20:29

Ồ,ra là vậy

Khách vãng lai đã xóa
Vũ Nam Khánh
Xem chi tiết
Sakuraba Laura
5 tháng 3 2018 lúc 22:32

Ta có:

\(\frac{a}{a+b}>\frac{a}{a+b+c}\)

\(\frac{b}{b+c}>\frac{b}{a+b+c}\)

\(\frac{c}{c+a}>\frac{c}{a+b+c}\)

\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)

\(\Rightarrow M>\frac{a+b+c}{a+b+c}\)

\(\Rightarrow M>1\) (1)

Ta có:

\(\frac{a}{a+b}< 1\Rightarrow\frac{a}{a+b}< \frac{a+c}{a+b+c}\)

\(\frac{b}{b+c}< 1\Rightarrow\frac{b}{b+c}< \frac{a+b}{a+b+c}\)

\(\frac{c}{c+a}< 1\Rightarrow\frac{c}{c+a}< \frac{c+b}{a+b+c}\)

\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{a+b}{a+b+c}+\frac{c+b}{a+b+c}\)

\(\Rightarrow M< \frac{2\left(a+b+c\right)}{a+b+c}\)

\(\Rightarrow M< 2\) (2)

Từ (1) và (2) => 1 < M < 2

=> M không phải là một số nguyên dương (đpcm)

Arima Kousei
5 tháng 3 2018 lúc 22:25

CM :        1 < M < 2 

Nguyễn Hùng Sơn
5 tháng 3 2018 lúc 22:38

áp dụng t/c dãy tỉ số bằng nhau, ta có

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}=\frac{a+b+c}{a+b+b+c+c+a}=\frac{a+b+c}{\left(a+b+c\right)\cdot2}=\frac{ }{ }\)\(=\frac{1}{2}\)

=>Vậy nếu a;b;c>0->\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)ko phải là 1 số nguyên dương

k cho mk

huu phuc
Xem chi tiết
Nguyễn Minh Quang
18 tháng 3 2022 lúc 15:34

ta có bất đẳng thức sau : 

\(\frac{a+b}{a+b+c+d}< \frac{a+b}{a+b+c}< \frac{a+b+d}{a+b+c+d}\)

tương tự ta sẽ có 

\(\frac{2\left(a+b+c+d\right)}{\left(a+b+c+d\right)}< A< \frac{3\left(a+b+c+d\right)}{\left(a+b+c+d\right)}\) hay 2<A<3 nên A không phải là số nguyên

Khách vãng lai đã xóa
Trương Đăng Hào
Xem chi tiết
bincorin
Xem chi tiết
Lê Chí Cường
10 tháng 8 2015 lúc 20:27

Vì a+b<a+b+c=>a/a+b>a/a+b+c

Vì b+c<a+b+c=>b/b+c>b/a+b+c

Vì c+a<a+b+c=>c/c+a>c/a+b+c

=>a/a+b+b/b+c+c/c+a>a/a+b+c+b/a+b+c+c/a+b+c=(a+b+c)/(a+b+c)=1

=>a/a+b+b/b+c+c/c+a>1

=>ĐPCM