Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
PHAM THI PHUONG
Xem chi tiết
nguyen van thi
28 tháng 11 2014 lúc 13:53

Gọi d là ƯCLN(2n+1;6n+5)

=>2n+1 chia hết cho d và 6n+5 chia hết cho d

=>3(2n+1) chia hết cho d và 6n+5 chia hết cho d

=>6n+3 chia hết cho d và 6n+5 chia hết cho d

=>(6n+5)-(6n+3) chia hết cho d

=>2 chia hết cho d =>ƯCLN(2n+1;6n+5) thuộc 1 hoặc 2

Nhưng loại 2 vì 2 số 2n+1 và 6n+5 là số lẻ nên không có ƯCLN là số chẳn => ƯCLN(2n+1;6n+5)=1 nên 2 số này là 2 số nguyên tố cùng nhau.

màn đêm chết chóc
Xem chi tiết
Tran Le Khanh Linh
7 tháng 3 2020 lúc 21:36

Gọi d là ƯCLN (2n+1;6n+5)

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\6n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\6n+5⋮d\end{cases}\Leftrightarrow}\hept{\begin{cases}6n+3⋮d\\6n+5⋮d\end{cases}}}\)

=> (6n+5)-(6n+3) chia hết cho d

=> 2 chia hết cho d 

=> d={1;2}

Vì 2n+1 là số lẻ => 2n+1 không chia hết cho 2

=> d=1

Khách vãng lai đã xóa

Gọi ƯCLN(2n+1;6n+5) là d

Có \(2n+1⋮d\)

\(6n+5⋮d\)

=> \(3\left(2n+1\right)⋮d\)

\(6n+5⋮d\)

=>\(6n+3⋮d\)

\(6n+5⋮d\)

=>\(\left(6n+5\right)-\left(6n+3\right)\)\(⋮\)d

=>2 chia hết cho d

=> d thuộc Ư(2)={1;2}

Vì 2n+1 lẻ nên d khác 2

=> d bằng 1

Vậy....

Khách vãng lai đã xóa
Đoàn Đức Huy
Xem chi tiết
NGUYEN NGOC DAT
26 tháng 12 2017 lúc 20:38

 Gọi d là Ước chung lớn nhất của 2n + 1 và 6n + 5

=> ( 6n + 5 ) - ( 2n + 1 ) chia hết cho d

=> ( 6n + 5 ) - 3( 2n + 1 ) chia hết cho d

=> ( 6n + 5 ) - ( 6n + 3 ) chia hết cho d

=> 2 chia hết cho d

Vậy ước chung lớn nhất của 2n + 1 và 6n + 5 là 2 .

nguyễn hà trâm
27 tháng 12 2017 lúc 11:27

Gọi a là ƯCLN(2n+1, 6n+5)

ta có: 2n+1 chia hết cho a và 6n+5 chia hết cho a

        3.(2n+1) chia hết cho a và (6n + 5) chia hết cho a

         6n+3 chia hết cho a và 6n+5 chia hết cho a

       [(6n+5) - (6n+3)] chia hết cho a

       [6n+5 - 6n -3] chia hết cho a

        2 chia hết cho a suy ra a  = 2 hoặc  1

Vậy 6n+5 và 2n+1 là hai số nguyên tố chung

Edogawa-conan
13 tháng 3 2023 lúc 21:02

 Gọi d là Ước chung lớn nhất của 2n + 1 và 6n + 5 (dϵN')

=> ( 6n + 5 ) - ( 2n + 1 ) chia hết cho d

=> ( 6n + 5 ) - 3( 2n + 1 ) chia hết cho d

=> ( 6n + 5 ) - ( 6n + 3 ) chia hết cho d

  2 chia hết cho a suy ra a  = 2 hoặc  1

Vậy 6n+5 và 2n+1 là hai số nguyên tố chung

Đỗ Quyên
Xem chi tiết
Vy Lê
Xem chi tiết
Rin Ngốc Ko Tên
26 tháng 7 2016 lúc 10:22

(6n+5) và ( 2n+1) 

Gọi d là ƯC ( 6n+5) và  (2n+1)

=> (6n+5) chia hết d và ( 2n+1) chia hết d

=> ( 6n+5) chia hết d và 3( 2n+1) chia hết d

=> [ ( 6n+5)  - ( 6n + 3 ) ] chia hết d

=> 2 chia hết d

=> d = 1 hoặc 2 

Vậy 6n+5 và 2n+1 nguyên tố cùng nhau

Nguyễn Thị Hường
Xem chi tiết
Nguyễn Thanh Nhàn
Xem chi tiết
Nguyễn Anh Quân
7 tháng 11 2017 lúc 15:28

Gọi ƯCLN của 2n+5 và 6n+13 là d(d thuộc N sao)

=> 2n+5 và 6n+13 đều chia hết cho d

=> 3.(2n+5) và 6n+13 đểu chia hết cho d

=> 6n+15 và 6n+13 đều chia hết cho d => 6n+15-(6n+13) chia hết cho d hay 2 chia hết cho d (1)

Mà 2n chẵn nên 2n+5 lẻ => d lẻ (1)=> d =1 (vì d thuộc N sao)

=> 2n+5 và 6n+13 là 2 số nguyên tố cùng nhau (ĐPCM)

pham  thanh trieu
Xem chi tiết
Đinh Đức Hùng
17 tháng 3 2017 lúc 12:49

Gọi \(d\inƯCLN\left(2n+1;6n+5\right)\) nên ta có :

\(2n+1⋮d\) và \(6n+5⋮d\)

\(\Leftrightarrow3\left(2n+1\right)⋮d\) và \(6n+5⋮d\)

\(\Leftrightarrow6n+3⋮d\) và \(6n+5⋮d\)

\(\Rightarrow\left(6n+5\right)-\left(6n+3\right)⋮d\)

\(\Rightarrow2⋮d\Rightarrow d=2\)

Mà \(2n+1;6n+5\) là các số lẻ nên không thể có ước là 2

\(\Rightarrow d=1\)

\(\Rightarrow2n+1\) và \(6n+5\) là nguyên tố cùng nhau

Nguyễn Như Quỳnh
Xem chi tiết
Huỳnh Ngọc Hân
31 tháng 7 2018 lúc 15:35

Giả sử 2n+1 và 6n+5 ko phải là 2 số nguyên tố cùng nhau thì:

cho d là ƯCLN của chúng và d>1

ta có:2n+1chia hết cho d,vậy 6n+3 cũng chia hết cho d

suy ra:6n+5-(6n+3) chia hết cho d

vậy 2 chia hết cho d

mà các ƯC của 2 là :2 và 1

mà cả 2 số đã cho đều là số lẻ,nên d phải bằng 1

nhưng như vậy thì trái với giả thuyết mà chúng ta đặt ra ban đầu

vậy 2n+1 và 6n+5 là 2 số nguyên tố cùng nhau