Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tiên
Xem chi tiết
trang lê
Xem chi tiết
~Miêu Nhi~
Xem chi tiết
tiên
Xem chi tiết
Thám Tử THCS Nguyễn Hiếu
11 tháng 3 2020 lúc 16:40

Xét hệ: \(\hept{\begin{cases}mx+y=5\\2mx+3y=6\end{cases}}\) <=> \(\hept{\begin{cases}3mx+3y=15\\2mx+3y=6\end{cases}}\) <=> \(\hept{\begin{cases}mx+y=5\\mx=9\left(\cdot\right)\end{cases}}\)

Hệ pt đã cho có nghiệm duy nhất <=> \(\left(\cdot\right)\)có nghiệm duy nhất m \(\ne\)0

Khi đó hệ đã cho có nghiệm duy nhất \(\hept{\begin{cases}x=\frac{9}{m}\\y=-4\end{cases}}\)

Ta có: (2m - 1)x + (m + 1)y = m

Hay (2m - 1).\(\frac{9}{m}\) + -4(m + 1) = m

<=> \(\frac{18m-9}{m}-4m-4-m=0\)

<=> \(\frac{18m-9-4m^2-4m-m^2}{m}=0\)

=> -5m2 + 14m - 9 = 0

<=> 5m2 - 14m + 9 = 0

<=>5m2 - 5m - 9m + 9 = 0

<=> 5m(m - 1) - 9(m - 1) = 0

<=> (5m - 9)(m - 1) = 0 <=> \(\orbr{\begin{cases}m=\frac{9}{5}\\m=1\end{cases}\left(TM\right)}\)

Vậy với m = 9/5 hoặc m = 1 thì thỏa mãn đề bài

Khách vãng lai đã xóa
you know
Xem chi tiết
you know
20 tháng 7 2018 lúc 18:38

Help me!♥♥!

you know
23 tháng 7 2018 lúc 10:54

từ hệ pt tinh x,y theo m là ra

Kiyotaka Ayanokoji
16 tháng 7 2020 lúc 20:44

Trả lời:

\(\hept{\begin{cases}\left(m+1\right)x-y=3\\mx+y=m\end{cases}}\)    \(\Leftrightarrow\hept{\begin{cases}\left(m+1\right)x-\left(m-mx\right)=3\\y=m-mx\end{cases}}\)

                                                  \(\Leftrightarrow\hept{\begin{cases}mx+x-m+mx=3\\y=m-mx\end{cases}}\)

                                                  \(\Leftrightarrow\hept{\begin{cases}2mx+x=m+3\\y=m-mx\end{cases}}\)

                                                  \(\Leftrightarrow\hept{\begin{cases}x.\left(2m+1\right)=m+3\left(3\right)\\y=m-mx\end{cases}}\)

Để hệ phương trình có nghiệm duy nhất \(\Leftrightarrow\)(3) có nghiệm duy nhất 

                                                                  \(\Leftrightarrow2m+1\ne0\)

                                                                 \(\Leftrightarrow m\ne\frac{-1}{2}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{m+3}{2m+1}\\y=\frac{m^2+m-3}{2m+1}\end{cases}}\)

Ta có: \(x+y>0\)

\(\Leftrightarrow\frac{m+3}{2m+1}+\frac{m^2+m-3}{2m+1}>0\)

\(\Leftrightarrow\frac{m^2+2m}{2m+1}>0\)

\(\Leftrightarrow\frac{m.\left(m+2\right)}{2m+1}>0\)

\(\Rightarrow\hept{\begin{cases}m>0\\-2< m< \frac{-1}{2}\end{cases}}\)\(\left(TM\right)\)

Vậy \(\hept{\begin{cases}m>0\\-2< m< \frac{-1}{2}\end{cases}}\)thì hệ phương trrinhf có nghiệm duy nhất thỏa mãn \(x+y>0\)

Khách vãng lai đã xóa
Phạm Thị Hằng
Xem chi tiết
33. Nguyễn Minh Ngọc
Xem chi tiết
ミ★Zero ❄ ( Hoàng Nhật )
6 tháng 1 2022 lúc 20:54

Vì \(\left(m-1\right)x+y=2\)\(\Rightarrow y=2-\left(m-1\right)x\) ( 1 )

Thay vào PT dưới có : \(mx+2-\left(m-1\right)x=m+1\)

\(\Rightarrow x+1=m\)( pt này luôn có nghiệm duy nhất )

\(\Rightarrow x=m-1\), thay vào ( 1 ) ta có :

\(y=2-\left(m-1\right)^2\)

Ta có : \(x+y=-4\) \(\Leftrightarrow m-1+2-\left(m-1\right)^2=-4\)

\(\Leftrightarrow\left(m-1\right)^2-\left(m-1\right)-6=0\)

\(\left[\left(m-1\right)^2-3\left(m-1\right)\right]+\left[2.\left(m-1\right)-6\right]=0\)

\(\Rightarrow\left[\left(m-1\right)-3\right].\left[\left(m-1\right)+2\right]=0\)

\(\Rightarrow\hept{\begin{cases}m-1=3\\m-1=-2\end{cases}}\Rightarrow\hept{\begin{cases}m=4\\m=-1\end{cases}}\)

Khách vãng lai đã xóa
Thủy Phạm Thanh
Xem chi tiết
nhi chau
Xem chi tiết