Cho hệ phương trình: \(\hept{\begin{cases}mx+y=m\\x-y=1\end{cases}\left(I\right)}\)
a) giải hệ phương trình khi \(m=\sqrt{3}\)
b) Tìm m để hệ phương trình \(\left(I\right)\)có nghiệm
Cho hệ phương trình \(\hept{\begin{cases}mx+y=m\\x-y=1\end{cases}}\left(I\right)\)
a) giải hệ phương trình khi \(m=\sqrt{3}\)
b) Với giá trị nào của m để hệ phương trình \(\left(I\right)\) có nghiệm
a)cho hệ phương trình \(\hept{\begin{cases}x-2y=3-m\\2x+y=3\left(m+2\right)\end{cases}}\)
Gọi nghiệm của hệ phương trình là(x;y)Tìm m để \(x^2+y^2\)đạt GTNN
b)Cho hệ phương trình \(\hept{\begin{cases}mx+y=5\\2x-y=2\end{cases}}\)
Tìm m để hệ phương trình có nghiệm thỏa mãn x+y=1
Cho hệ phương trình \(\hept{\begin{cases}\left(m-3\right)x+2y=3\\mx-y=7\end{cases}}\)
a) tìm m để hệ phương trình có nghiệm duy nhất
b) tìm m để hệ phương trình vô nghiệm
Cho hệ phương trình \(\hept{\begin{cases}mx+y=5\left(1\right)\\2mx+3y=6\left(2\right)\end{cases}}\)
Tìm m để hệ phương trình có nghiệm thỏa mãn (2m-1)x+(m+1)y=m (3)
Xét hệ: \(\hept{\begin{cases}mx+y=5\\2mx+3y=6\end{cases}}\) <=> \(\hept{\begin{cases}3mx+3y=15\\2mx+3y=6\end{cases}}\) <=> \(\hept{\begin{cases}mx+y=5\\mx=9\left(\cdot\right)\end{cases}}\)
Hệ pt đã cho có nghiệm duy nhất <=> \(\left(\cdot\right)\)có nghiệm duy nhất m \(\ne\)0
Khi đó hệ đã cho có nghiệm duy nhất \(\hept{\begin{cases}x=\frac{9}{m}\\y=-4\end{cases}}\)
Ta có: (2m - 1)x + (m + 1)y = m
Hay (2m - 1).\(\frac{9}{m}\) + -4(m + 1) = m
<=> \(\frac{18m-9}{m}-4m-4-m=0\)
<=> \(\frac{18m-9-4m^2-4m-m^2}{m}=0\)
=> -5m2 + 14m - 9 = 0
<=> 5m2 - 14m + 9 = 0
<=>5m2 - 5m - 9m + 9 = 0
<=> 5m(m - 1) - 9(m - 1) = 0
<=> (5m - 9)(m - 1) = 0 <=> \(\orbr{\begin{cases}m=\frac{9}{5}\\m=1\end{cases}\left(TM\right)}\)
Vậy với m = 9/5 hoặc m = 1 thì thỏa mãn đề bài
Cho hệ phương trình \(\hept{\begin{cases}\left(m+1\right)x-y=3\\mx+y=m\end{cases}}\)
Tìm m để hệ phương trình có nghiệm duy nhât thỏa mãn x+y>0
Trả lời:
\(\hept{\begin{cases}\left(m+1\right)x-y=3\\mx+y=m\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}\left(m+1\right)x-\left(m-mx\right)=3\\y=m-mx\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}mx+x-m+mx=3\\y=m-mx\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2mx+x=m+3\\y=m-mx\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x.\left(2m+1\right)=m+3\left(3\right)\\y=m-mx\end{cases}}\)
Để hệ phương trình có nghiệm duy nhất \(\Leftrightarrow\)(3) có nghiệm duy nhất
\(\Leftrightarrow2m+1\ne0\)
\(\Leftrightarrow m\ne\frac{-1}{2}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{m+3}{2m+1}\\y=\frac{m^2+m-3}{2m+1}\end{cases}}\)
Ta có: \(x+y>0\)
\(\Leftrightarrow\frac{m+3}{2m+1}+\frac{m^2+m-3}{2m+1}>0\)
\(\Leftrightarrow\frac{m^2+2m}{2m+1}>0\)
\(\Leftrightarrow\frac{m.\left(m+2\right)}{2m+1}>0\)
\(\Rightarrow\hept{\begin{cases}m>0\\-2< m< \frac{-1}{2}\end{cases}}\)\(\left(TM\right)\)
Vậy \(\hept{\begin{cases}m>0\\-2< m< \frac{-1}{2}\end{cases}}\)thì hệ phương trrinhf có nghiệm duy nhất thỏa mãn \(x+y>0\)
Bài 1: Cho hệ phương trình với tham số m:
\(\hept{\begin{cases}\left(m-1\right)x+y=3m-4\\x+\left(m-1\right)y=m\end{cases}}\)
a) Giải và biện luận hề phương trình.
b) Tìm các giá trị của m để nghiệm của hệ phương trình là các số nguyên
c) tìm các giá trị của m để hệ phương trình có nghiệm dương duy nhất
Bài 2: Cho hệ phương trình với tham số m:
\(\hept{\begin{cases}x+my=m+1\\mx+y=3m-1\end{cases}}\)
a) Giải và biện luận hệ phương trình theo m
b) Trong trường hợp hệ có nghiệm duy nhất, tìm các giá trị của m để tích xy nhỏ nhất.
Cho hệ phương trình: \(\hept{\begin{cases}\left(m-1\right)x+y=2\\mx+y=m+1\end{cases}}\)
Tìm m để hệ phương trình có nghiệm (x;y) thỏa mãn: x + y = -4
Vì \(\left(m-1\right)x+y=2\)\(\Rightarrow y=2-\left(m-1\right)x\) ( 1 )
Thay vào PT dưới có : \(mx+2-\left(m-1\right)x=m+1\)
\(\Rightarrow x+1=m\)( pt này luôn có nghiệm duy nhất )
\(\Rightarrow x=m-1\), thay vào ( 1 ) ta có :
\(y=2-\left(m-1\right)^2\)
Ta có : \(x+y=-4\) \(\Leftrightarrow m-1+2-\left(m-1\right)^2=-4\)
\(\Leftrightarrow\left(m-1\right)^2-\left(m-1\right)-6=0\)
\(\left[\left(m-1\right)^2-3\left(m-1\right)\right]+\left[2.\left(m-1\right)-6\right]=0\)
\(\Rightarrow\left[\left(m-1\right)-3\right].\left[\left(m-1\right)+2\right]=0\)
\(\Rightarrow\hept{\begin{cases}m-1=3\\m-1=-2\end{cases}}\Rightarrow\hept{\begin{cases}m=4\\m=-1\end{cases}}\)
Giải hệ phương trình :\(\hept{\begin{cases}\left(m+2\right)x+y=3\\\left(m-1\right)x+2y=m-4\end{cases}}\)
Tìm m để hệ phương trình chỉ có một nghiệm duy nhất
\(\hept{\begin{cases}\left(m+1\right)x-y=3\\mx+y=m\end{cases}}\left(I\right)\)
Tìm m để hệ phương trình (I) có nghiệm x+y>0