cho tam giác ABC nhọn.Kẻ AH vuông góc với BC .Tính chu vi tam giác ABC,biết AB-5cm ,AH=4cm,HC=12cm
Cho tam giác ABC nhọn. kẻ AH vuông góc với BC. Tính chu vi tam giác ABC biết AB = 5cm, AH = 4cm, HC = 12cm
Áp dụng định lý Pitago, ta có: \(AC^2=AH^2+HC^2\)
\(\Rightarrow20^2=12^2+HC^2\)
\(\Rightarrow HC^2=20^2-12^2\)
\(\Rightarrow HC^2=400-144=256\)
\(\Rightarrow HC=16\left(cm\right)\)
Áp dụng định lý Pitago, ta có: \(AB^2=BH^2+AH^2\)
\(\Rightarrow AB^2=5^2+12^2\)
\(\Rightarrow AB^2=25+144=169\)
\(\Rightarrow AB=13\left(cm\right)\)
Vậy CV tam giác ABC là
\(20+5+16+13=54\left(cm\right)\)
Cho tam giác ABC nhọn . Kẻ AH vuông góc với BC. Tính chu vi của tam giác ABC . Biết AB = 5cm, AH=4cm, HC=12cm
Ta có:\(AC^2=HC^2+AH^2\)(Định lý pytago)
\(\Rightarrow AH^2=AC^2-HC^2=4^2-2^2=16-4=12\)
\(\Rightarrow AH=\sqrt{12}\approx3\)
Độ dài BC là :3+2=5
Chu vi của tam giác ABC la:\(4+5+5\approx14\)
cho tam giác ABC nhọn.Kẻ AH vuông góc với BC biết AC=20cm AH=12cm HB=5cm a) tính AB b)tính chu vi tam giác ABC
A) tam giác ABH vuông tại A . Theo định lí Py-Ta Go ta có
\(AH^2+BH^2=AB^2\)
THAY BH = 5CM , AH = 12 CM , ta được
\(12^2+5^2=AB^2\)
\(AB^2\)= 144+25 =169
AB =\(\sqrt{169}\)=13 CM
SORRY MÌNH CHỈ GIẢI ĐƯỢC CÂU A THÔI
MONG BẠN THÔNG CẢM
a, Xét tam giác AHB, có ^AHB = 900
Áp dụng định lí Py ta go ta có :
\(AB^2=AH^2+HB^2=144+25=169\)
\(\Rightarrow AB^2=169\Rightarrow AB=13\)cm
b, Xét tam giác ACH, có ^AHC = 900
Áp dụng định lí Py ta go ta có :
\(AC^2=AH^2+CH^2\Rightarrow CH^2=AC^2-AH^2\)
\(=400-144=256\Rightarrow CH=\sqrt{256}=16\)cm
Vậy BC = CH + HB = 16 + 5 = 21 cm
Chu vi tam giác ABC là :
\(P_{\Delta ABC}=20+21+13=54\)cm
Cho tam giác ABC nhọn.Kẻ AH vuông góc với BC.Tính chu vi tam giác ABC biết AH=12cm;BH=5cm;CH=16cm.
Trả lời:Chu vi tam giác ABC bằng cm.Cho tam giác ABC nhọn.Kẻ AH vuông góc với BC.Tính chu vi tam giác ABC biết AH=12cm;BH=5cm;CH=16cm.
Trả lời:Chu vi tam giác ABC bằng cm.
Cho tam giác ABC nhọn . Kẻ AH vuông góc với BC. Tính chu vi của tam giác ABC . Biết AB = 5cm, AH=4cm, HC=12cm
CẦN GẤP KH PHẢI VẼ HÌNH CHỈ LỜI GIẢI THUI!!!!!!!!!!!
XÉT \(\Delta BAH\)VUÔNG TẠI H
CÓ \(AB^2=BH^2+HA^2\left(Đ/L,PY-TA-GO\right)\)
THAY\(5^2=BH^2+4^2\)
\(\Rightarrow BH^2=5^2-4^2\)
\(\Rightarrow BH^2=25-16\)
\(\Rightarrow BH^2=9\)
\(\Rightarrow BH=\sqrt{9}=3\left(cm\right)\)
TA CÓ \(BH+HC=BC\)
THAY\(3+12=BC\)
\(BC=15\left(cm\right)\)
XÉT \(\Delta HAC\)VUÔNG TẠI H
CÓ \(AC^2=AH^2+HC^2\)(Đ/L PYTAGO)
THAY\(AC^2=4^2+12^2\)
\(AC^2=16+144\)
\(AC^2=160\)
\(\Rightarrow AC=\sqrt{160}=4\sqrt{10}\)
CHU VI \(\Delta ABC\)LÀ
\(AB+AC+BC=5+4\sqrt{10}+15=20+4\sqrt{10}\)
cho tam giác nhọn ABC KẺ AH vuông góc BC.Tính chu vi tam giác biết AB=5cm,AH=4cm,HC=12cm
Cho tam giác ABC nhọn.Kẻ AH vuông góc với BC.Tính chu vi tam giác ABC biết AH=12cm;BH=5cm;CH=16cm.
Cho tam giác nhọn ABC. Kẻ AH vuông góc với BC (H thuộc BC). Biết rằng AB = 5cm, AH = 4cm, HC = 12cm. Tính chu vi của tam giác ABC.
Mình sẽ tick cho bạn nào giúp mình!
Hình bạn tự vẽ nhé
AH vuông góc với BC => Tam giác AHB và tam giác AHC vuông tại H
Áp dụng định lí Pytago cho tam giác vuông AHB ta được :
AB2 = AH2 + BH2
BH = \(\sqrt{AB^2-AH^2}=\sqrt{5^2-4^2}=3cm\)
Áp dụng định lí Pytago cho tam giác vuông AHC ta được :
AC2 = AH2 + HC2
\(AC=\sqrt{AH^2+HC^2}=\sqrt{4^2+12^2}=12,649...\approx12,65cm\)
H thuộc BC => BC = BH + HC = 3 + 12 = 15cm
Chu vi hình tam giác ABC = AB + AC + BC = 5 + 12, 65 + 15 = 32, 65cm
#Sai thì bỏ qua nhé xD
AD định lý Pytago vào trong tam giác ABH vuông tại H ta có: BH2 = AB2 - AH2=25-16=9
Suy ra BH=3(cm)
Ta có BC=BH+CH =12+3=15(cm)
AD định lý Pytago vào trong tam giác AHC vuông tại H ta có:AC2=AH2+HC2=42+122=160
Suy ra:AC=12,65(cm;tương đương)
Vậy chu vi tam giác ABC là: 5+15+12.65=32.65(cm)
Tamgiác AHB vuông tại H có: AB2= AH2+BH2( đli Pytago) => BH2=AB2-AH2=52- 42=9 -> BH=3 cm
BC= BH+HC=5+12=17 cm
Tam giác AHC vuông tại H có: AC2= AH2+HC2( đli Pytago) => AC2= 42+ 122= 160--> AC= \(\sqrt{160}\)cm\(\approx\)= 12,6 cm
Chu vi 12,6 +17 +5=34,6cm
Cho tam giác ABC nhọn.Kẻ AH vuông góc với BC.Tính tam giác ABC biết AH=12cm ,BH=5cm, CH=16cm.
Chu vi tam giác ABC bằng
Áp dụng định lí Pytago vào tam giác vuông AHC ta có :
\(AC^2=AH^2+HC^2\)
\(AC^2=12^2+16^2\)
\(AC^2=144+256\)
\(AC^2=400\)
\(AC=\sqrt{400}\)
\(AC=20\left(cm\right)\)
Áp dụng định lí Pytago vào tam giác vuông AHB ta có :
\(AB^2=AH^2+BH^2\)
\(AB^2=12^2+5^2\)
\(AB^2=144+25\)
\(AB^2=169\)
\(AB=\sqrt{169}\)
\(AB=13\left(cm\right)\)
Chu vi tam giác ABC là:
\(AB+AC+BC=AB+AC+\left(BH+HC\right)=13+20+\left(5+16\right)=13+20+21=54\left(cm\right)\)
theo định lí pitago trong
tam giác vuông ABH ta có \(AB^2=BH^2+AH^2=5^2+12^2=169\)
=> AB=13
tam giác vuông AHC có : \(AC^2=AH^2+HC^2=12^2+16^2=400\)
=> AC=20
=> chu vi tam giác ABC là AB+BC+AC=13+5+16+20=54
Cho tam giác ABC nhọn.Kẻ AH vuông góc BC.Tính chu vi tam giác ABC biết AC=20cm;AH=12cm;BH=5cm.
Áp dụng định lí Py-ta-go vào tgABH ta được:
\(AB^2=AH^2+BH^2\)
Mà AH=12;BH=5
\(\Rightarrow AB^2=12^2+5^2\)
\(\Rightarrow AB^2=144+25=169\)
\(\Rightarrow AB=13\left(cm\right)\left(doAB>0\right)\)
Áp dụng định lí Py-ta-go vào tg ACH ta được: