tìm gia trị
a/ nhỏ nhất của x2+y2+6y+10-x
b/ lớn nhất của 2x-2x2-5
làm
5. Tìm giá trị nhỏ nhất của B= (x+1)2 + (y+3)2+1
Ai nhanh mk tick cho
ghi rõ cách làm nha
cho A=x+1/x^2+x+1
a, tìm giá trị nhỏ nhất của A
b, tiìm giá trị lớn nhất của A
Cho x ,y thuộc Z:
a, Với giá trị nào của x thì A = 100 - |x + 5| có giá trị lớn nhất . Tìm giá trị đó.
b, Với giá trị nào của y thì B = |y - 3| + 50 có giá trị nhỏ nhất. Tìm giá trị đó
a) Vì \(\left|x-5\right|\ge0\)nên \(100-\left|x-5\right|\le100\)
Để A lớn nhất thì \(\left|x-5\right|=0\Leftrightarrow x=-5\)
Vậy A lớn nhất bằng 100 khi và chỉ khi x= -5
b) Vì \(\left|y-3\right|\ge0\)nên \(\left|y-3\right|+50\ge50\)
Để B lớn nhất thì \(\left|y-3\right|=0\Leftrightarrow y=3\)
Vậy B nhỏ nhất bằng 50 khi và chỉ khi y= 3
tìm giá trị lớn nhất và giá trị nhỏ nhất của M = ab/a+b
giá trị nhỏ nhất của
a)(x^2+5)^2+4
b)giá trị lớn nhất của
/6-2x/-2/4+x/
a) 29
b)14
tick nhé,tớ thi violympic rồi
1) Tìm x, bIết:| 2x+5 |+4\(\ge\)25
2) Tìm giá trị nhỏ nhất của biểu thức:
a) A= |2x-3| - 5
b) B= |2x-1|+|3-2x|+5
3) Tìm giá trị lớn nhất của biểu thức:
A= -|2X+1|+7
B= |2x+3|-|2x+2|
1) \(\left|2x+5\right|\ge21\Rightarrow2x+5\ge21\)hoặc \(2x+5
2b) Áp dụng bất đẳng thức giá trị tuyệt đối: |a| + |b| \(\ge\) |a + b|. Dấu "=" xảy ra khi tích a.b \(\ge\) 0
Ta có: B = |2x - 1| + |3 - 2x| + 5 \(\ge\) |2x - 1+3 - 2x| + 5 = |2| + 5 = 7
=> Min B = 7 khi
(2x - 1)( 3 - 2x) \(\ge\) 0 => (2x - 1)(2x - 3) \(\le\) 0
Mà 2x - 1 > 2x - 3 nên 2x - 1 \(\ge\) 0 và 2x - 3 \(\le\) 0
=> x \(\ge\) 1/2 và x \(\le\) 3/2
Bài 1 :
a) Tìm giá trị nhỏ nhất của A = l x - 2 l + 5
b) Tìm giá trị nhỏ nhất của B = 12 - l x + 4 l
c) Tìm giá trị nhỏ nhất của C = (căn bậc hai x) + 1
Tìm giá trị nhỏ nhất của biểu thức ( các bạn trình bày chi tiết giùm mình nha )
a) M = |x+15/19|
b) N = |x-4/7| -1/2
Tìm giá trị lớn nhất của biểu thc
a) P = - |5/3-x|
b) Q = 9 - |x-1/10|
Tìm giá trị nhỏ nhất hoặc giá trị lớn nhất của các biểu thức sau
\(\dfrac{3x^2-1}{x^2+2}=\dfrac{6x^2-2}{2\left(x^2+2\right)}=\dfrac{7x^2-\left(x^2+2\right)}{2\left(x^2+2\right)}=\dfrac{7x^2}{2\left(x^2+2\right)}-\dfrac{1}{2}\ge=-\dfrac{1}{2}\)
GTNN của biểu thức là \(-\dfrac{1}{2}\), xảy ra khi \(x=0\)
Biểu thức ko tồn tại GTLN