CMR tồn tại ít nhất 1 số là bội của 17 gồm toàn chữ số 1
Ai đúng mình tick, mình cần gấp
cmr tồn tại một bội số của 17 gồm toàn chữ số 1 ?
CMR tồn tại một bội của 13 gồm toàn chữ số 0(giải giúp mình cẩn thận rồi mình like)
Chọn bộ 13 số sau:
1,11,...111111 (13 chữ số 1)
Đem chia 13 số trên cho 12.
Theo nguyên lý Diricle thì tồn tại 2 số trong 14 số trên có cùng số dư khi đem chia cho 13. Ta gọi 2 số đó là 111..111 (m chữ số 2) và 111.111 (n chữ số 2) m,n trong khoảng 1 đến 13
Không mất tính tổng quát, giả sử m>n.
Do 2 số trên có cùng số dư khi chia 12 nên
[111.111 (m chữ số 2) - 111.111 (n chữ số 2)] chia hết cho 12
=>111.11100...000 (m-n chữ số 2; n chữ số 0) chia hết cho 12
hay 111.111(m-n chữ số 2).10^n chia hết cho 12
=>111.111 (m-n chữ số 2) chia hết cho 12
=> đpcm.
CMR tồn tại 1 số là bội của 31 gồm toàn chữ số 7
Bạn gọi như sau:
a1=7
a2=77
a3=777
......
a32=77777.....7777(gồm 32 số 7)
Đem chia cho 31 ta có 32 số số dư
R1;R2:R3;R4;....:R32 nhưng chỉ nhận 31 giá trị(0;1;2;3;4;5;6;.....;30) nên sẽ có 2 số dư trùng nhau
chẳng hạn Rm=Rn (Với m>n) thì am-an chia hết cho 31 (vì đồng dư),ta lại có
777..7(gồm m chữ số 7)-77...7(gồm n chữ số 7)=777...7(gồm m-n số 7)00....0(gồm n số 0)=777...7 nhân 10^n chia hết cho 31
vi 10^n và 31 là hai số nguyên tố cùng nhau nên suy ra 777..7 chia hết cho 31 .
Vì bài này chỉ chứng minh chứ ko phải tìm số nhé :D
Chứng minh rằng tồn tại một bội của 13 gồm toàn chữ số 2
Nhanh mình tick cho
Tham khảo: https://olm.vn/hoi-dap/detail/1839321884.html
Bn vào link này : https://olm.vn/hoi-dap/detail/107117815751.html
# HOK TỐT #
CMR: tồn tại 1 bội của 31 chỉ gồm toàn chữ số 0 và 1
Xét dãy số: 1; 11; 111; 1111; ...; 111...1 (32 số 1)
Ta đã biết 1 số tự nhiên khi chia cho 31 chỉ có thể có 31 loại số dư là dư 0; 1; 2; ...; 30. Có 32 số mà chỉ có 31 loại số dư nên theo nguyên lí Đirichlet sẽ có ít nhất 2 số cùng dư
Hiệu của 2 số này chia hết cho 31 và chỉ gồm toàn chữ số 0 và 1 (đpcm)
chứng tỏ ràng tồn tại một bội của 13 gồm toàn chữ số 2
giúp mình với nhé
Xét các số \(10^{13},10^{12},10^{11},...,10^1,10^0\). Có tất cả 14 số như thế. Mà một số khi chia cho 13 chỉ có 13 số dư là \(0,1,2,...,12\) nên sẽ tồn tại 2 số \(10^i,10^j\left(0\le i< j\le13\right)\) có cùng số dư khi chia cho 13.
\(\Rightarrow10^i-10^j⋮13\)
\(\Rightarrow10^i\left(10^{j-i}-1\right)⋮13\)
\(\Rightarrow10^{j-i}-1⋮13\)
Nếu \(j-i=1\) thì dẫn đến \(9⋮13\), vô lí. Vậy \(j-i\ge2\)
Ta thấy \(10^{j-i}-1=99...9\) (với \(j-i\) chữ số 9).
Từ đó suy ra 999...99 (\(j-i\) chữ số 9) \(⋮13\)
hay \(9.111...11\) (\(j-i\) chữ số 1) \(⋮13\)
hay \(111...11\) (\(j-i\) chữ số 1) \(⋮13\)
hay \(222...22\) (\(i-j\) chữ số 2) \(⋮13\)
Vậy tồn tại một bội của 13 chỉ gồm toàn các chữ số 2.
Chỗ này mình sửa lại 1 chút là \(10^j-10^i⋮13\) nhé. Mặc dù cái trên về bản chất thì vẫn đúng (vì nếu \(a⋮13\) thì \(-a⋮13\)) nhưng nếu viết như trên thì đôi khi sẽ gây nhầm lẫn cho người đọc.
Chứng minh rằng tồn tại một bội số của 17 mà:
a)gồm toàn các chữ số 1 và 0
b)gồm toàn các chữ số 1
CMR: Tồn tại bội của 131 gồm toàn chữ số 2
cho m là số nguyên dương không là bội của 2 và 5. CM: luôn tồn tại một số gồm toàn chữ số 1 chia hết cho m
các bạn giúp mình với, đang chuẩn bị thi cấp 3 nên cần đáp án nhanh càng tôt :))