(-1^2)^2÷1/4-2×(1/2)^3
1. (1+1/2).(1+1/2^2).(1+1/2^3)....(1+1/2^100) < 3
2. 1/(5+1)+2/(5^2+1)+4/(5^4+1)+...+ 1024/(5^1024+1) <1/4
3. 3/(1!+2!+3!)+4/(2!+3!+4!)+...+100/(98!+99!+100!) <1/2
??????????????????????????????????????????????
Lần đầu post, mình quên mất chưa nêu câu hỏi. Nhờ các bạn chứng minh dùm 3 câu trên với, cám ơn nhiều ah!
1.\(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{2^2}\right)\left(1+\frac{1}{2^3}\right)+...+\left(1+\frac{1}{2^{100}}\right)\)
Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)
\(\Rightarrow2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)
\(\Rightarrow A=1-\frac{1}{2^{100}}\)
Thấy:\(\frac{1}{2^{100}}>0\Rightarrow1-\frac{1}{2^{100}}< 1\)
\(\Rightarrow A< 1\)
Ta có:\(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{2^2}\right)\left(1+\frac{1}{2^3}\right)...\left(1+\frac{1}{2^{100}}\right)=A+100< 1+100=101\)
\(101>\left(1+\frac{1}{2}\right)\left(1+\frac{1}{2^2}\right)\left(1+\frac{1}{2^3}\right)...\left(1+\frac{1}{2^{100}}\right)\ge100\)
\(\Rightarrow\left(1+\frac{1}{2}\right)\left(1+\frac{1}{2^2}\right)\left(1+\frac{1}{2^3}\right)...\left(\frac{1}{2^{100}}\right)>\left(\frac{101}{100}\right)^{100}>3\)
*Cách khác:
\(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{2^2}\right)\left(1+\frac{1}{2^3}\right)+...+\left(1+\frac{1}{2^{100}}\right)\)
\(=\frac{2+1}{2}.\frac{2^2+1}{2^2}....\frac{2^{100}+1}{2^{100}}\)
Ta thấy:
\(\frac{2+1}{2}>\frac{2^2+1}{2^2}>....>\frac{2^{100}+1}{2^{100}}\)
\(\Rightarrow\frac{2+1}{2}>\frac{2+1}{2}.\frac{2^2+1}{2^2}....\frac{2^{100}+1}{2^{100}}\)
Mà \(\frac{2+1}{2}< 3\)
\(\Rightarrow\frac{2+1}{2}.\frac{2^2+1}{2^2}....\frac{2^{100}+1}{2^{100}}< 3\)
\(\Rightarrow\left(1+\frac{1}{2}\right)\left(1+\frac{1}{2^2}\right)\left(1+\frac{1}{2^3}\right)+...+\left(1+\frac{1}{2^{100}}\right)< 3\)
>, <, = ?
4 – 1 … 2 | 4 – 3 … 4 – 2 |
4 – 2 … 2 | 4 – 1 … 3 + 1 |
3 – 1 … 2 | 3 – 1 … 3 – 2 |
Lời giải chi tiết:
4 – 1 > 2 | 4 – 3 < 4 – 2 |
4 – 2 = 2 | 4 – 1 < 3 + 1 |
3 – 1 = 2 | 3 – 1 > 3 – 2 |
4-1 > 2
4-2 = 2
4-3 < 4-2
4-1 < 3+1
4 – 1 > 2 | 4 – 3 < 4 – 2 |
4 – 2 = 2 | 4 – 1 < 3 + 1 |
3 – 1 = 2 | 3 – 1 > 3 – 2 |
>, <, = ?
4 – 1 … 2 | 4 – 3 … 4 – 2 |
4 – 2 … 2 | 4 – 1 … 3 + 1 |
3 – 1 … 2 | 3 – 1 … 3 – 2 |
Lời giải chi tiết:
4 – 1 > 2 | 4 – 3 < 4 – 2 |
4 – 2 = 2 | 4 – 1 < 3 + 1 |
3 – 1 = 2 | 3 – 1 > 3 – 2 |
Cho dãy số 1/1 ; 1/2 ; 2/1 ; 1/3 ; 2/2 ; 3/1 ; 1/4 ; 2/3 ; 3/2 ; 4/1 ; 1/5 ; 2/4 ; 3/3 ; 4/2 ; 5/1 ; 1/6 ; 2/5 ; 3/4...
Tìm số thứ 2013
Tính:
4 - 1 = 4 - 2 = 3 + 1 = 1 + 2 =
3 - 1 = 3 - 2 = 4 - 3 = 3 - 1 =
2 - 1 = 4 - 3 = 4 - 1 = 3 - 2 =
Thực hiện phép trừ rồi điền kết quả vào chỗ trống.
4 - 1 = 3 4 - 2 = 2 3 + 1 = 4 1 + 2 = 3
3 - 1 = 2 3 - 2 = 1 4 - 3 = 1 3 - 1 = 2
2 - 1 = 1 4 - 3 = 1 4 - 1 = 3 3 - 2 = 1
a,1/3 .(x-2/5)=3/4 b, 7/3:(x-2/3)=4/5 c,1/3.(x-2/5)=4/5 d, 2/3.(x-1/2)-1/4.(x-2/5)=7/3 e,3/7 .(x-2/3)+1/2=5/4.(x-2) f,1/2.(x-3)+1/3.(x-4)+1/4.(x-5)=1/5 g,[2/3.(x-1/2)-4/5]:(x-1/3)=21/5 h, {x-[1/2.(x-3)+11/5]}:(x-1/2)=3/5 i,x.(x-2/5)-(x+2).x+11/4=4/3
a: =>x-2/5=3/4:1/3=3/4*3=9/4
=>x=9/4+2/5=45/20+8/20=53/20
b: =>x-2/3=7/3:4/5=7/3*5/4=35/12
=>x=35/12+2/3=43/12
c: 1/3(x-2/5)=4/5
=>x-2/5=4/5*3=12/5
=>x=12/5+2/5=14/5
d: =>2/3x-1/3-1/4x+1/10=7/3
=>5/12x-7/30=7/3
=>5/12x=7/3+7/30=77/30
=>x=77/30:5/12=154/25
e: \(\Leftrightarrow x\cdot\dfrac{3}{7}-\dfrac{2}{7}+\dfrac{1}{2}-\dfrac{5}{4}x+\dfrac{5}{2}=0\)
=>\(x\cdot\dfrac{-23}{28}=\dfrac{2}{7}-3=\dfrac{-19}{7}\)
=>x=19/7:23/28=76/23
f: =>1/2x-3/2+1/3x-4/3+1/4x-5/4=1/5
=>13/12x=1/5+3/2+4/3+5/4=257/60
=>x=257/65
i: =>x^2-2/5x-x^2-2x+11/4=4/3
=>-12/5x=4/3-11/4=-17/12
=>x=17/12:12/5=85/144
(1+1 1/4+1 1/2+1 3/4+2+2 1/4+2 1/2+2 3/4+...+4 3/4):23
Chứng minh rằng:
a,A=1/2+1/2^2+1/2^3+.+1/2^2<1
b,B=1/3+1/3^2+1/3^3+...+1/3^n<1/2
c,B=1/2-1/2^2+1/2^3-1/2^4+...+1/2^2015-1/2^2016<1/3
d,D=1/3+2/3^2+3/3^3+4/3^4+...+100/3^100<3/4
?reeeeeeeeeeee
Ủa, cái số gì đây??????
Cho dãy : 1/1 ; 2/1 ; 1/2 ; 3/1 ; 2/2 ; 1/3 ; 4/1 ; 3/2 ; 2/3 ; 1/4 ; 5/1 ; 4/2 ; 3/3 ; 2/4 ; 1/5 ;... . Tìm số thứ 2001 của dãy