cho 2 số tự nhiên x và y thỏa mãn: 2x+1 . 3y = 12x khi đó x+y=?
Cho x, y ,z, là các số tự nhiên thỏa mãn 2x + 3y - 5z + 19 = 0 và x-1/2=y+3/3=z-1/4 . Hãy tìm số dư khi chia x^2018+y^2018+z^2018 cho 4
Ko biết Anh gì ơi
Cho hai số x;y thỏa mãn : 2x+1/5=3y-2/7=2x+3y-1/6x
Khi đó x;y = ?
cho các số x,y,z thỏa mãn x-1/2= y-2/3 = z-3/4 và 2x+3y-z=95. khi đó x+y+z=?
x-1/2 = y-2/3 = z-3/4 =2x- 2/4 = 3y - 6/9 = 2x + 3y -z - 5/ 9 = 10
=> x = 21 , y = 32 , z = 43
= > x + y + z = 96
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2x-2}{4}\frac{3y-6}{9}=\frac{2x+3y-z-5}{9}=10\)
Cho các số x, y, z thỏa mãn: x -1 / 2 = y -2 / 3 = z - 3 / 4 và 2x + 3y- z = 95
Khi đó x + y + z = ?
Cho 3 số x, y, z thỏa mãn: x-1/ 2 = y-2/ 3 = z-3/ 4 và 2x + 3y - z = 50. Khi đó x + y + z =
Ta có : \(\frac{2x-2}{4}\)=\(\frac{3y-6}{9}\)=\(\frac{z-3}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x-2}{4}\)=\(\frac{3y-6}{9}\)=\(\frac{z-3}{4}\)=\(\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}\)=\(\frac{2x+3y-z-5}{9}\)=\(\frac{45}{9}\)=5
=> x = 11
y = 17
z = 23
=> x + y + z = 11 + 17 + 23 = 51
1a.Ta có:
x-1/2=y-2/3=z-3/4<=>(2x-1)/2=(3y-2)/3=...
=>(50-3z)4=4z-3<=>200-12z=4z-3<=>16z=2...
=>z=203/16.thay vào dãy tỉ số ban đầu ta tìm được x=199/16,y=605/16
câu 2:
bạn chép sai đề bài rồi hay sao ấy
đề bài phải thế này mới đúng:cho đk như bạn.cmr:(a^3+b^3+c^3)/(b^3+c^3+d^3)=a/d
giải theo tỉ lệ thức là ra ngay đấy mà.Cố lên bạn nhé!
Tìm các số tự nhiên x,y thỏa mãn: 2x+1.3y-2= 12x
\(\Leftrightarrow2^{x+1}\cdot3^{y-2}=2^{2x}\cdot3^x\)
=>x+1=2x và y-2=x
=>-x=-1 và y=x+2
=>x=1 và y=3
Cho 2 số x;y thỏa mãn:\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\). Khi đó x+y=......
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\)
=> \(\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\)
=> 6x = 12
=> x = 2
Thay x = 2 vào \(\frac{2x+1}{5}\), ta có:
\(\frac{2.2+1}{5}=\frac{3y-2}{7}=1\)
=> 3y - 2 = 7
=> 3y = 9
=> y = 3
=> x + y = 2 + 3 = 5
KL: x + y = 5
Tìm các số tự nhiên x, y, z thỏa mãn (2x+y)2+3x+3y+1=z2
Cho 2 số x; y thỏa mãn \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)
Khi đó \(x+y=?\)
Ta có: \(\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}=\frac{2x+3y-1}{6x}\)
\(\Rightarrow6x=12\Rightarrow x=12:6\Rightarrow x=2\)
Áp dụng tính chất dãy tỉ số bằng nhau,ta có:
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\)\(=\frac{2x+3y-1}{6x}\)
\(\Rightarrow6x=12\Rightarrow x=2\)
Khi đó:\(\frac{2\times2+1}{5}=\frac{3y-2}{7}\Rightarrow1=\frac{3y-2}{7}\Rightarrow3y-2=7\Rightarrow3y=9\Rightarrow y=3\)