Cho biểu thức \(B=\frac{x}{x-1}+\frac{1}{x+1}-\frac{2}{1-x^2}\)
a/ Rút gọn biểu thức B(các bạn làm hay khôg cũng được)
b/TÌm các giá trị x để giá trị của biểu thức B là các số nguyên tố nhỏ hơn 10
Bài 1 : Cho biểu thức A = \(\frac{x}{x+2}\) + \(\frac{4-2x}{x^2-4}\)
a ) Tìm điều kiện của x để biểu thức A có nghĩa
b ) Rút gọn biểu thứ A
c ) Tìm giá trị của x khi A = 0
Bài 2 : cho biểu thức B = \(\frac{x}{x+3}\)+ \(\frac{9-3x}{x^2-9}\)
a ) Tìm điều kiện của x để biểu thức B có nghĩa
b ) Rút gọn biểu thứ B
c ) Tìm giá trị của x khi B = 0
Bài 3 : Cho phân thức : A =\(\frac{x^2+2x+1}{x^2-x-2}\)
a ) Tìm x để biểu thức A xác định
b ) Rút gọn biểu thức A
c ) Tính giá trị của biểu thức A khi x = 0 , 1 , 2012
d ) Tìm các giá trị nguyên của x để A nhận giá trị nguyên
Bài 4 : Cho biểu thức : A =\(\frac{1}{x+1}\)+ \(\frac{1}{x-1}\)- \(\frac{2}{x^2-1}\)
a ) tìm điều kiện của x để biểu thức A có nghĩa
b ) Rút gọn biểu thức A
C ) Tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên
CÁC BẠN GIẢI ĐƯỢC BÀI NÀO THÌ GIẢI GIÚP MÌNH VỚI NHÉ KHÔNG NHẤT THIẾT PHẢI GIẢI HẾT ĐÂU ! BÂY GIỜ MÌNH ĐANG RẤT CẦN CÁC BẠN CỐ GẮNG NHÉ !
Dài quá trôi hết đề khỏi màn hình: nhìn thấy câu nào giải cấu ấy
Bài 4:
\(A=\frac{\left(x-1\right)+\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}-\frac{2}{\left(x+1\right)\left(x-1\right)}=\frac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)
a) DK x khác +-1
b) \(dk\left(a\right)\Rightarrow A=\frac{2}{\left(x+1\right)}\)
c) x+1 phải thuộc Ước của 2=> x=(-3,-2,0))
1. a) Biểu thức a có nghĩa \(\Leftrightarrow\hept{\begin{cases}x+2\ne0\\x^2-4\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+2\ne0\\x-2\ne0\\x+2\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ne-2\\x\ne2\end{cases}}\)
Vậy vs \(x\ne2,x\ne-2\) thì bt a có nghĩa
b) \(A=\frac{x}{x+2}+\frac{4-2x}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{4-2x}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x^2-2x+4-2x}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x^2-4x+4}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x-2}{x+2}\)
c) \(A=0\Leftrightarrow\frac{x-2}{x+2}=0\)
\(\Leftrightarrow x-2=\left(x+2\right).0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)(ko thỏa mãn điều kiện )
=> ko có gía trị nào của x để A=0
Bài 1:
a) \(x+2\ne0\Leftrightarrow x\ne-2\)
\(x^2-4\ne0\Leftrightarrow x\ne+_-2\)
b) \(A=\frac{x}{x+2}+\frac{4-2x}{x^2-4}=\frac{x-2}{x+2}\)
c) \(A=0\Leftrightarrow\frac{x-2}{x+2}=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Mà đk: x khác 2
Vậy ko tồn tại giá trị nào của x để A=0
rút gọn biểu thức b =(x)/(x-1)+(1)/(x+1)+(2)/(x^2-1)
tìm các giá trị x để giá trị của biểu thức b là các số tự nhiên nhỏ hơn 10
cho biểu thức: A=(\(\frac{x}{x+1}+\frac{1}{x-1}-\frac{4x}{2-2x^2}\)) : \(\frac{x+1}{x-2}\)
a) Tìm điều kiện xác định của biểu thức A
b) Rút gọn biểu thức A
c) Tính giá trị của biểu thức A khi x = -1
d) Tìm các giá trị nguyên của x để A có giá trị nguyên
a, ĐKXĐ: x\(\ne\) 1;-1;2
b, A= \(\left(\frac{x}{x+1}+\frac{1}{x-1}-\frac{4x}{2-2x^2}\right):\frac{x+1}{x-2}\)
=\(\left(\frac{2x^2-2x}{2\left(x+1\right)\left(x-1\right)}+\frac{2x+2}{2\left(x+1\right)\left(x-1\right)}+\frac{4x}{2\left(x-1\right)\left(x+1\right)}\right)\times\frac{x-2}{x+1}\)
=\(\frac{2x^2-2x+2x+2+4x}{2\left(x+1\right)\left(x-1\right)}\times\frac{x-2}{x+1}\)
=\(\frac{2x^2+4x+2}{2\left(x+1\right)\left(x-1\right)}\times\frac{x-2}{x+1}\)
=\(\frac{2\left(x+1\right)^2}{2\left(x+1\right)\left(x-1\right)}\times\frac{x-2}{x+1}\)
=\(\frac{x-2}{x-1}\)
c, Khi x= -1
→A= \(\frac{-1-2}{-1-1}\)
= -3
Vậy khi x= -1 thì A= -3
Câu d thì mình đang suy nghĩ nhé, mình sẽ quay lại trả lời sau ^^
a,ĐKXĐ:x#1; x#-1; x#2
b,Ta có:
A=\(\left(\frac{x}{x+1}+\frac{1}{x-1}-\frac{4x}{2-2x^2}\right):\frac{x+1}{x-2}\)
=\(\left(\frac{x\left(x-1\right)2}{\left(x+1\right)\left(x-1\right)2}+\frac{\left(x+1\right)2}{\left(x-1\right)\left(x+1\right)2}+\frac{4x}{2\left(x-1\right)\left(x+1\right)}\right):\frac{x+1}{x-2}\)
=\(\frac{2x^2-2x+2x+2+4x}{\left(x+1\right)\left(x-1\right)2}.\frac{x-2}{x+1}\)
=\(\frac{2x^2+4x+2}{\left(x+1\right)\left(x-1\right)2}.\frac{x-2}{x+1}\)
=\(\frac{2\left(x+1\right)^2}{\left(x+1\right)\left(x-1\right)2}.\frac{x-2}{x+1}\)
=\(\frac{x-2}{x+1}\)
c,Tại x=-1 ,theo ĐKXĐ x#-1 \(\Rightarrow\)A không có kết quả
d,Để A có giá trị nguyên \(\Rightarrow\frac{x-2}{x+1}\)có giá trị nguyên
\(\Leftrightarrow x-2⋮x+1\)
\(\Leftrightarrow x+1-3⋮x+1\)
Mà \(x+1⋮x+1\Rightarrow3⋮x+1\)
\(\Rightarrow x+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow x\in\left\{0;-2;2;-4\right\}\)
Mà theo ĐKXĐ x#2\(\Rightarrow x\in\left\{0;-2;-4\right\}\)
Vậy \(x\in\left\{0;-2;-4\right\}\)thì a là số nguyên
1.Cho biểu thức: Q= \(\frac{x+3}{2x+1}-\frac{x-7}{2x+1}\)
a). Thu gọn biểu thức
b) Tìm các giá trị nguyên của x để Q nhận giá trị nguyên
2. Cho biểu thức A =\(\frac{1}{x-2}+\frac{1}{x+2}+\frac{x^2+1}{x^2-4}\)với x khác cộng trừ 2
a) rút gọn biểu thức A
b) chứng tỏ rằng với mọi x thỏa mãn -2<x <2, x khác - 1 phân thức luôn có giá trị âm
( các bạn giúp mình nha, cảm ơn nhiều)
Bài 1:
Cho biểu thức: \(A=\left(\frac{1}{1-x}+\frac{2}{x+1}-\frac{5-x}{1-x^2}\right):\frac{1-2x}{x^2-1}\)
a, Rút gọn biểu thức A
b, Tìm các giá trị nguyên của x để biểu thức A nhận giá trị nguyên
c, Tìm x để |A|=A
Bài 2: Cho \(a^3+b^3+c^3=3abc\)với \(a,b,c\ne0\)
Tính giá trị biểu thức \(P=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1 +\frac{c}{a}\right)\)
Bài 3: Tìm các số có ba chữ số chia hết cho 7 và tổng các chữ số của nó cũng chia hết cho 7
a) \(A=\left(\frac{1}{1-x}+\frac{2}{x+1}-\frac{5-x}{1-x^2}\right):\frac{1-2x}{x^2-1}\) (ĐKXĐ: \(x\ne\pm1\) )
\(=\left(\frac{x+1+2\left(1-x\right)-5+x}{1-x^2}\right):\frac{1-2x}{x^2-1}\)
\(=\left(\frac{x+1+2-2x-5+x}{1-x^2}\right):\frac{1-2x}{x^2-1}\)
\(=\left(\frac{-2}{1-x^2}\right):\frac{1-2x}{x^2-1}\)
\(=\frac{2}{x^2-1}.\frac{x^2-1}{1-2x}=\frac{2}{1-2x}\)
b) Để x nhận giá trị nguyên <=> 2 chia hết cho 1 - 2x
<=> 1-2x thuộc Ư(2) = {1;2;-1;-2}
Nếu 1-2x = 1 thì 2x = 0 => x= 0
Nếu 1-2x = 2 thì 2x = -1 => x = -1/2
Nếu 1-2x = -1 thì 2x = 2 => x =1
Nếu 1-2x = -2 thì 2x = 3 => x = 3/2
Vậy ....
Xét biểu thức A = \(\frac{1}{15}\cdot\frac{225}{x+2}+\frac{3}{14}\cdot\frac{196}{3\cdot x+6}\)
a) Rút gọn biểu thức A.
b) Tìm các giá trị của x để A có giá trị là số nguyên.
c) Trong các giá trị của A. Tìm giá trị lớn nhất và giá trị nhỏ nhất.
Làm khâu rút gọn thôi
\(=\frac{15}{x+2}+\frac{42}{3x+6}\)
\(=\frac{15}{x+2}+\frac{42}{3\left(x+2\right)}\)
\(=\frac{3.15+42}{3\left(x+2\right)}\)
\(=\frac{87}{3\left(x+2\right)}\)
\(=\frac{29}{x+2}\)
Câu b có phải để tử chia hết cho mẫu không nhỉ? Không chắc thôi để ngkh làm
a, A=15/x+2 +42/3x+6
=45/3x+6 + 42/3x+6
=87/3x+6 = 29x+2
b,để A có giá trị là số nguyên thì 29 phải chia hết cho x+2 hay x+2 thuộc tập hợp ước của 29 mà Ư(29)={29;-29;1;-1} .
Xét từng trường hợp .C, lấy trường hợp lớn nhất và bé nhất
Cho biểu thức A=\(\left(\frac{1}{1-x}+\frac{2}{1+x}-\frac{5-x}{1-x^2}\right):\frac{1-2x}{x^2-1}\)
a, Rút gọn A
b, Tìm các giá trị nguyên của x để biểu thức A nhận giá trị nguyên
c, Tìm x để IaI=A
\(ĐKXĐ:x\ne\pm1\)
a) \(A=\left(\frac{1}{1-x}+\frac{2}{1+x}-\frac{5-x}{1-x^2}\right):\frac{1-2x}{x^2-1}\)
\(=\left(\frac{\left(1+x\right)}{\left(1+x\right)\left(1-x\right)}+\frac{2\left(1-x\right)}{\left(1+x\right)\left(1-x\right)}-\frac{5-x}{1-x^2}\right):\frac{1-2x}{x^2-1}\)
\(=\frac{1+x+2-2x-5+x}{1-x^2}:\frac{2x-1}{1-x^2}\)
\(=\frac{8}{1-x^2}.\frac{1-x^2}{2x-1}=\frac{8}{2x-1}\)
b) Để A nguyên thì \(\frac{8}{2x-1}\inℤ\)
\(\Leftrightarrow8⋮2x-1\Rightarrow2x-1\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
Mà dễ thấy 2x - 1 lẻ nên\(2x-1\in\left\{\pm1\right\}\)
+) \(2x-1=1\Rightarrow x=1\left(ktmđkxđ\right)\)
+) \(2x-1=-1\Rightarrow x=0\left(tmđkxđ\right)\)
Vậy x nguyên bằng 0 thì A nguyên
c) \(\left|A\right|=A\Leftrightarrow A\ge0\)
\(\Rightarrow\frac{8}{2x-1}\ge0\Rightarrow2x-1>0\Leftrightarrow x>\frac{1}{2}\)
Vậy \(x>\frac{1}{2}\)thì |A| = A
a, \(A=\left(\frac{1}{1-x}+\frac{2}{1+x}-\frac{5-x}{1-x^2}\right):\frac{1-2x}{x^2-1}\left(x\ne\frac{1}{2};x\ne\pm1\right)\)
\(\Leftrightarrow A=\left(\frac{1+x}{\left(1-x\right)\left(1+x\right)}+\frac{2-2x}{\left(1-x\right)\left(1+x\right)}-\frac{5-x}{\left(1-x\right)\left(1+x\right)}\right):\frac{\left(x+1\right)\left(x-1\right)}{2x-1}\)
\(\Leftrightarrow A=\frac{1+x+2-2x-5+x}{\left(1-x\right)\left(1+x\right)}\cdot\frac{\left(x-1\right)\left(x+1\right)}{2x-1}\)
\(\Leftrightarrow A=\frac{-2\left(1-x^2\right)}{\left(1-x^2\right)\left(2x-1\right)}=\frac{2}{2x-1}\)
Vậy \(A=\frac{2}{2x-1}\left(x\ne\frac{1}{2};x\ne\pm1\right)\)
b) \(A=\frac{2}{2x-1}\left(x\ne\frac{1}{2};x\ne\pm1\right)\)
Để A nhận giá trị nguyên thì 2 chia hết cho 2x-1
Mà x nguyên => 2x-1 nguyên
=> 2x-1 thuộc Ư (2)={-2;-1;1;2}
Ta có bảng
2x-1 | -2 | -1 | 1 | 2 |
2x | -1 | 0 | 2 | 3 |
x | -1/2 | 0 | 1 | 3/2 |
Đối chiếu điều kiện
=> x=0
Cho biểu thức P=\(\left(\frac{\text{1}}{x^2+x+1}+\frac{1}{x^2-x}+\frac{2x}{1-x^3}\right).\left(x^2-x\right)\)
a) Rút gọn biểu thức P?
b) tìm các giá trị nguyên của x để P nhận giá trị nguyên ?
A = \(\sqrt{27}+\frac{2}{\sqrt{3}-2}-\sqrt{\left(1-\sqrt{3}\right)^2}\)
B = \(\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)( với x >0, \(x\ne1\))
a) Rút gọn các biểu thức a,b
b) Tìm các giá trị của x sao cho giá trị của biểu thức B nhỏ hơn giá trị của biểu thức A
\(a,A=\sqrt{27}+\frac{2}{\sqrt{3}-2}-\sqrt{\left(1-\sqrt{3}\right)^2}\)
\(=3\sqrt{3}+\frac{2\left(\sqrt{3}+2\right)}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}-\left(\sqrt{3}-1\right)\)
\(=3\sqrt{3}+\frac{2\sqrt{3}+4}{3-4}-\sqrt{3}+1\)
\(=3\sqrt{3}-2\sqrt{3}-4-\sqrt{3}+1\)
\(=-3\)
\(B=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)
\(=\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)
\(=\frac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)
\(=\frac{\sqrt{x}-1}{\sqrt{x}}\)
b, Ta có \(B< A\)
\(\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}}< -3\)
\(\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}}+3< 0\)
\(\Leftrightarrow\frac{\sqrt{x}-1+3\sqrt{x}}{\sqrt{x}}< 0\)
\(\Leftrightarrow\frac{4\sqrt{x}-1}{\sqrt{x}}< 0\)
\(\Leftrightarrow4\sqrt{x}-1< 0\left(Do\sqrt{x}>0\right)\)
\(\Leftrightarrow\sqrt{x}< \frac{1}{4}\)
\(\Leftrightarrow0< x< \frac{1}{2}\)(Kết hợp ĐKXĐ)
Vậy ...