Tìm số tự nhiên nhỏ nhất biết rằng số đó khi chia cho 3,4,5, 6 đều có số dư là 2 còn khi chi cho 7 thì có số dư là 3
Tìm số tự nhiên nhỏ nhất biết rằng số đó khi chia cho 3,4,5, 6 đều có số dư là 2 còn khi chi cho 7 thì có số dư là 3
Tìm số tự nhiên nhỏ nhất, biết rằng số đó khi chia cho 3, cho 4, cho 5, cho 6 đều dư là 2, còn chia cho 7 thì dư 3.
Lời giải:
Gọi số tự nhiên thỏa mãn đề là $n$. Vì số đó chia $3,4,5,6$ đều dư $2$ nên số đó sẽ có dạng
$n=BCNN(3,4,5,6).k+2$ với $k$ tự nhiên
$n=60k+2$
$n$ chia $7$ dư $3$ nghĩa là $n-3\vdots 7$
$\Leftrightarrow 60k-1\vdots 7$
$\Leftrightarrow 63k-(60k-1)\vdots 7$
$\Leftrightarrow 3k+1\vdots 7$
$\Leftrightarrow 3k-6\vdots 7$
$\Leftrightarrow k-2\vdots 7$ nên $k=7t+2$ với $t$ tự nhiên.
Thay vô $n$ thì $n=60k+2=60(7t+2)+2=420t+122$
Vì $t\geq 0$ nên $n\geq 122$
Vậy số tự nhiên nhỏ nhất thỏa đề là $122$
Tìm số tự nhiên nhỏ nhất, biết rằng số đó khi chia cho 3, 4,5 ,6 đều dư là 2, còn chia cho 7 thì dư 3
goi so do la a
suy ra (a-2)chia het cho 3;4;5;6 (a-2) la BC(3;4;5;6)
vay (a-2)thuoc (0;60;120;...)
vay a thuoc (2;62;122;...)
ma 122 chia 7 du 3 vay so can tim la 122
nha
Tìm số tự nhiên nhỏ nhất, biết rằng số đó khi chia cho 3, cho 4, cho 5, cho 6 đều dư là 2, còn chia cho 7 thì dư 3.
tìm số tự nhiên nhỏ nhất, biết rằng số đó khi chia cho 3, cho 4, cho 5, cho 6 đều dư 2,còn chia cho 7 thì dư 3
gọi STN đó là a. Ta có:
a-2 chia hết cho 3;4;5;6
a-2 thuộc BC(3,4,5,6)
BCNN(3,4,5,6)=60
a={62;122;...}
vì a nhỏ nhất , a chia 7 dư 3 nên a=122
Gọi số tự nhiên đấy là b .
Ta có : a-2 sẽ chia hết cho 3,4,5,6
nên ta tìm bội chung của chúng ok
rồi nói với cô giáo cô làm nốt họ em
Tìm số tự nhiên nhỏ nhất, biết rằng khi số đó chia cho 3,cho 4, cho 5, cho 6 đều dư 2, còn chia cho 7 thì dư 3.
Giải
Gọi số cần tìm là x.
x chia 3 dư 2 => x - 2 ⋮ 3
x chia 4 dư 2 => x - 2 ⋮ 4
x chia 5 dư 2 => x - 2 ⋮ 5
x chia 6 dư 2 => x - 2 ⋮ 6
⇒x - 2 ∈ BCNN(3;4;5;6)
Ta có : 3 = 3 4 = 22 5 = 5 6 = 2.3
⇒BCNN(3;4;5;6) = 22 .3.5 = 60
mà B(60) = { 0 ; 60 ; 120 ; 180 ; 240 ; 300 ; 360 ; 420 ; 480 ; ... }
⇒BC(3;4;5;6) = { 0 ; 60 ; 120 ; 180 ; 240 ; 300 ; 360 ; 420 ; 480 ; ... }
Nếu x - 2 = 0 => ( loại )
Nếu x - 2 = 60 => x = 60 - 2 = 58 ( loại )
Nếu x - 2 = 120 => x = 120 + 2 = 122 ( nhận )
Vì x phải nhỏ nhất nên x = 122
Vậy số tự nhiên nhỏ nhất cần tìm đó là: 122
tìm số tự nhiên nhỏ nhất, biết rằng số đó khi chia cho 3, cho 4,cho 5, cho 6 đều dư 12, còn chia cho 7 thì dư 3.tìm số đó?
gọi số đó là a
vì a chia 3,4,5,6 đều dư 12
=>(a-12) chia hết 3,4,5,6
=>(a-12) thuộc BC(3,4,5,6)
3=3 ; 4=2^2 ; 5=5 ; 6=2*3
BCNN(3,4,5,6) = 2^2*3*5 =60
BC(3,4,5,6)=B(60)= {0;60;120;180;...}
vì a nhỏ nhất và chia 7 dư 3 =>(a-12) -3 chia hết cho 7 và là nhỏ nhất
từ tập hợp trên => (a-12)=180 =>a=192
thế đó, nói thật nó chẳng khó gì nhưng mình có làm sai thì nhắc nhé ^-^
Bài 1: Tìm số tự nhiên bé nhất khi chia cho 2; 5; 11; 26 đều được dư là 1
Bài 2: Tìm số tự nhiên nhỏ nhất có 3 chữ số biết rằng số đó chia cho 4; 6; 7 đều được dư là 3
Bài 3: Nhân ngày 1- 6, Chị phụ trách chia kẹo như sau, Nếu chia mỗi gói 10 cái thì một gói chỉ có 9 cái, nếu chia mỗi gói 9 cái thì 1 gói 8 cái, nếu chia mỗi gói 7 cái thì 1 gói có 6 cái, nếu chia mỗi gói 2 cái thì thừa 1 cái, biết số kẹo từ 2000 – 3000 cái, Hỏi có bao nhiêu kẹo
1. Tìm số tự nhiên nhỏ nhất biết rằng số đó khi chia cho 3, cho 4, cho 5 đều dư 2, còn chia 7 dư 3.
2. Tìm x, y nguyên biết x+y+xy=40.
3. Khi chia một số tự nhiên a chia cho 4 ta được số dư là 3 còn khi chia a cho 9 thì được số dư là 5. Tìm số dư trong phép chia a cho 36.
2, TA có:
x + y + xy = 40
=> x(y + 1) + y + 1 = 41
=> (x + 1)(y + 1) = 41
=> x + 1 thuộc Ư(41) = {1; 41}
Xét từng trường hợp rồi thay vào tìm y
Có lẽ các bạn thấy hơi dài nhưng các bạn có thể làm 1 trong 3 câu cũng được. Nhưng đừng làm sai nhé! Hihihi...
1, Gọi số cần tìm là A
A chia 3, 4, 5 dư 2 => A - 2 chia hết cho 3, 4 ,5
=> A - 2 thuộc ƯC(3, 4, 5) = {60, 120, 180,...}
Mà A chia 7 dư 3 => A - 3 chia hết cho 7
=> A = 360