Tìm số tự nhiên nhỏ nhất sao cho các số 6;8;2;4 để 4,3× a<17
1/tìm số tự nhiên nhỏ nhất có 3 chữ số biết rằng số đó chia cho 4,6,8 đều dư 32/tìm số tự nhiên nhỏ nhất sao cho khi chia 11 dư 6,chia cho 4 dư 1,chia cho 19 dư 113/tìm số tự nhiên nhỏ nhất sao cho a chia 5 dư 3,a chia 7 dư 44/tìm số tự nhiên nhỏ nhất bt đc chia cho 3 cho 4 cho 5 cho 6 đều dư 2 còn chia cho 7 thì dư 3.
1, Gọi số đó là :a
=>a-3⋮4,6,8
=>a-3 ϵ\(\left\{24,48,72,96,120,...\right\}\)
=>a ϵ\(\left\{27,51,75,99,123,...\right\}\)
Vì a là số nhỏ nhất có 3 chữ số thỏa mãn đề bài nên a=123.
Tìm kiếm bài học, bài tập, mã lớp, mã khóa học...
hehe
Tìm số tự nhiên n nhỏ nhất khác 0 sao cho khi chia n cho 15/6, cho 2/5 ta đều được thương là các số tự nhiên.
Bài 10. Tìm số tự nhiên n nhỏ nhất sao cho khi chia n cho 5,7,11 thì được các số dư tương ứng
là 3,4,6.
Bài 11. Tìm số tự nhiên n lớn nhất có ba chữ số sao cho khi chia n cho 5,8,7 được các số dư
tương ứng là 2,3,5.
Bài 12. Tìm số tự nhiên n>0 nhỏ nhất sao cho n có thể viết thành tổng của ba số tự nhiên liên
tiếp và tổng của 7 số tự nhiên liên tiếp lớn hơn 0.
Bài 13. Tìm số tự nhiên n nhỏ nhất sao cho n có thể viết thành tổng của 4 số tự nhiên liên tiếp,
5 số tự nhiên liên tiếp và 6 số tự nhiên liên tiếp lớn hơn 0.
Tìm số tự nhiên nhỏ nhất a khác 0 sao cho khi chia a cho các phân số 11/18 và 25/6 ta đều được kết quả là các số tự nhiên
Theo đề bài ta có : a/(11/18) = a*(18/11) thuộc N suy ra 18*a chia hết cho 11.
Lại có : a/(25/6) = a*(6/25) thuộc N suy ra 6*a chia hết cho 25.
Như vậy, a là bội chung của 11 và 25 nhưng để a nhỏ nhất thì a = BCNN (11, 25) = 275.
Vậy số cần tìm là 275 bạn nhé!
Chúc bạn học tốt!
Bài 1: Tìm số tự nhiên x lớn nhất sao cho: 13 ; 15 ; 61 chia x đều dư 1.
Bài 2: Tìm số tự nhiên x nhỏ nhất biết khi chia x cho các số 5; 7; 11 thì được các số dư lần lượt là 3; 4; 6.
a) Tìm số tự nhiên nhỏ nhất khi chia số đó cho 6, 7, 9 được các số dư lần lượt là: 2, 3, 5.
b) Tìm số tự nhiên a sao cho chia số đó cho 17, 25 được các số dư theo thứ tự là 8 và 16.
a) Tìm số tự nhiên nhỏ nhất khi chia số đó cho 6, 7, 9 được các số dư lần lượt là: 2, 3, 5.
b) Tìm số tự nhiên a sao cho chia số đó cho 17, 25 được các số dư theo thứ tự là 8 và 16.
a, Gọi số phải tìm là a, a ∈ N*
Vì a chia cho 6, 7, 9 được số dư lần lượt là 2, 3, 5 nên (a+4) chia hết cho 6,7,9.
Suy ra (a+4) ∈ BC(6,7,9)
Mà a là số tự nhiên nhỏ nhất
Suy ra (a+4) = BC(6,7,9) = 3 2 . 2 . 7 = 126 => a+4 = 126 => a = 122
Vậy số phải tìm là 126
b, Gọi số phải tìm là a, a ∈ N*
Vì a chia cho 17, 25 được các số dư theo thứ tự là 8 và 16.
nên (a+7) chia hết cho 8; 16.
Suy ra (a+7) ∈ BC(8;16)
Suy ra BCNN(8;16) = 16 => a+7 ∈ B(16) = 16k (k ∈ N).
Vậy số phải tìm có dạng 16k – 7
a, Tìm số tự nhiên nhỏ nhất để khi chia cho 5, 8, 12 thì số dư theo thứ tự là 2, 6, 8.
b, Tìm các số a, b, c nhỏ nhất khác 0 sao cho 16a = 25b = 30c.
Tìm số tự nhiên n nhỏ nhất sao cho n, n +2, n+ 6 là các số nguyên tố.
Các số nguyên tố là các số tự nhiên lớn hơn 1 chỉ có 2 ước là 1 và chinh nó
=> n không bằng 1
a) Tìm các số tự nhiên n sao cho 6 ⁝ (n+1).
b) Biết hai số 23.3a và 2b.35 có ước chung lớn nhất là 22.35 và bội chung nhỏ nhất là 23.36. Hãy tìm giá trị của các số tự nhiên a và b.
a) Vì nên (n + 1) ∈ Ư(6) = {1; 2; 3; 6}
Ta có bảng sau:
n + 1 | 1 | 2 | 3 | 6 |
n | 0 | 1 | 2 | 5 |
Vì n là số tự nhiên nên n ∈ {0; 1; 2; 5}
Vậy n ∈ {0; 1; 2; 5}.
b) Gọi x = 23.3a và y = 2b.35
Ta có tích của hai số là tích của ƯCLN và BCNN của hai số đó.
Ta có: x. y = ƯCLN(x, y). BCNN(x, y)
Vì ước chung lớn nhất của hai số là và bội chung nhỏ nhất của hai số là 23.36.
Vì thế 3 + b = 5. Suy ra b = 5 – 3 = 2
a + 5 = 11. Suy ra a = 11 – 5 = 6
Vậy a = 6; b = 2.
Gọi x = 23.3a và y = 2b.35
Ta có: x. y = ƯCLN(x, y). BCNN(x, y)
Vì ước chung lớn nhất của hai số là 22.35 và bội chung nhỏ nhất của hai số là 23.36
Ta được x.y=
Mà xy =
Ta được 5=3+b và 11=a+5
Vậy b=2 và a=6