Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc Như Trang
Xem chi tiết
doramon vs  izaremon
14 tháng 3 2020 lúc 20:26

Ta có : 

\(A=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)

\(=\frac{x+y}{y}.\frac{y+z}{z}.\frac{z+x}{x}\)

Do x + y + z = 0 => x+y = -z ; y+z = -x ; z+x = -y

\(\Rightarrow A=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}=\frac{\left(-1\right).xyz}{xyz}=-1\)

Khách vãng lai đã xóa
Bùi Ngọc Ánh
Xem chi tiết
Edogawa Conan
Xem chi tiết
Nguyễn Minh Đăng
24 tháng 10 2020 lúc 13:51

Ta có: \(\frac{1}{\left(3x+1\right)\left(y+z\right)+x}=\frac{1}{3x\left(y+z\right)+x+y+z}\le\frac{1}{3x\left(y+z\right)+3\sqrt[3]{xyz}}\)

\(=\frac{1}{3x\left(y+z\right)+3\sqrt[3]{1}}=\frac{1}{3x\left(y+z\right)+3}=\frac{1}{3\left(xy+zx+1\right)}=\frac{1}{3}\cdot\frac{1}{\frac{1}{y}+\frac{1}{z}+1}\)

Tương tự ta chứng minh được:

\(\frac{1}{\left(3y+1\right)\left(z+x\right)+y}\le\frac{1}{3}\cdot\frac{1}{\frac{1}{z}+\frac{1}{x}+1}\) ; \(\frac{1}{\left(3z+1\right)\left(x+y\right)+z}\le\frac{1}{3}\cdot\frac{1}{\frac{1}{x}+\frac{1}{y}+1}\)

Cộng vế 3 BĐT trên lại:

\(A\le\frac{1}{3}\cdot\left(\frac{1}{\frac{1}{x}+\frac{1}{y}+1}+\frac{1}{\frac{1}{y}+\frac{1}{z}+1}+\frac{1}{\frac{1}{z}+\frac{1}{x}+1}\right)\)

\(\Leftrightarrow3A\le\frac{1}{\left(\frac{1}{\sqrt[3]{x}}\right)^3+\left(\frac{1}{\sqrt[3]{y}}\right)^3+1}+\frac{1}{\left(\frac{1}{\sqrt[3]{y}}\right)^3+\left(\frac{1}{\sqrt[3]{z}}\right)^3+1}+\frac{1}{\left(\frac{1}{\sqrt[3]{z}}\right)^3+\left(\frac{1}{\sqrt[3]{x}}\right)^3+1}\)

Đặt \(\left(\frac{1}{\sqrt[3]{x}};\frac{1}{\sqrt[3]{y}};\frac{1}{\sqrt[3]{z}}\right)=\left(a;b;c\right)\) khi đó:

\(3A\le\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{c^3+a^3+1}\)

\(=\frac{1}{\left(a+b\right)\left(a^2-ab+b^2\right)+1}+\frac{1}{\left(b+c\right)\left(b^2-bc+c^2\right)+1}+\frac{1}{\left(c+a\right)\left(c^2-ca+a^2\right)+1}\)

\(\le\frac{1}{\left(a+b\right)\left(2ab-ab\right)+1}+\frac{1}{\left(b+c\right)\left(2bc-bc\right)+1}+\frac{1}{\left(c+a\right)\left(2ca-ca\right)+1}\)

\(=\frac{1}{ab\left(a+b\right)+1}+\frac{1}{bc\left(b+c\right)+1}+\frac{1}{ca\left(c+a\right)+1}\)

\(=\frac{abc}{ab\left(a+b\right)+abc}+\frac{abc}{bc\left(b+c\right)+abc}+\frac{abc}{ca\left(c+a\right)+abc}\)

\(=\frac{c}{a+b+c}+\frac{a}{b+c+a}+\frac{b}{c+a+b}\)

\(=\frac{a+b+c}{a+b+c}=1\)

Dấu "=" xảy ra khi: \(a=b=c\Leftrightarrow x=y=z=1\)

Vậy Max(A) = 1 khi x = y = z = 1

Khách vãng lai đã xóa
Inequalities
25 tháng 10 2020 lúc 8:07

Câu hỏi của Pham Van Hung - Toán lớp 9 - Học toán với OnlineMath

Khách vãng lai đã xóa
Hiếu Lê
Xem chi tiết
Bùi Thế Hào
23 tháng 12 2017 lúc 10:17

Ta có: \(\frac{x+y-z}{z}=\frac{x-y+z}{y}=\frac{y+z-x}{x}=\frac{x+y-z+x-y+z+y+z-x}{z+y+x}=\frac{x+y+z}{x+y+z}=1\)

=> \(\frac{x+y-z}{z}=1\) <=> x+y-z=z <=> x+y=2z

Tương tự: \(\frac{x-y+z}{y}=1=>x+z=2y\)

Và \(\frac{y+z-x}{x}=1=>y+z=2x\)

=> \(A=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}=\frac{\left(2z\right)\left(2x\right)\left(2y\right)}{xyz}=\frac{8xyz}{xyz}=8\)

Đáp số: A = 8

lutufine 159732486
Xem chi tiết
T.Ps
2 tháng 5 2019 lúc 16:59

#)Giải :

\(A=\left(1-\frac{z}{y}\right).\left(1-\frac{x}{y}\right).\left(1-\frac{y}{z}\right)\)

\(A=\frac{x-z}{x}.\frac{x+y}{z}.\frac{z-y}{x}\)

\(x+y-z=0\Leftrightarrow\hept{\begin{cases}x+y=z\\x-z=-y\\z-y=x\end{cases}}\)

Thay vào A, ta được :

\(A=\frac{-y}{x}.\frac{z}{y}.\frac{x}{z}=\frac{-yzx}{xyz}=-1\)

       ~Will~be~Pens~

Nguyễn Minh Hoàng
Xem chi tiết
tiểu khải love in love
Xem chi tiết
Bùi Lê Trà My
24 tháng 4 2016 lúc 20:55

=> x-z=y  ;  y-x=-z  ;  z+y=x

=> A=(-xyz)/(xyz)= -1

Đức Minh Nguyễn
Xem chi tiết
zZz Cool Kid_new zZz
25 tháng 7 2019 lúc 15:00

\(A=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)

\(A=\frac{x-z}{x}\cdot\frac{y-x}{y}\cdot\frac{y+z}{z}\)

Do \(x-y-z=0\)

\(\Rightarrow x-z=y;y-x=-z;y+z=x\)

Khi đó \(A=\frac{y}{x}\cdot\frac{-z}{y}\cdot\frac{x}{z}=-1\)

Vậy A=-1

zZz Cool Kid_new zZz
25 tháng 7 2019 lúc 15:04

\(\frac{1}{xy+x+1}+\frac{y}{yz+y+1}+\frac{1}{xyz+yz+y}\)

\(=\frac{1}{xy+x+1}+\frac{y}{yz+y+1}+\frac{1}{1+yz+y}\)

\(=\frac{1}{xy+x+1}+\frac{y+1}{yz+y+1}\)

\(=\frac{yz}{xy\cdot yz+xyz+yz}+\frac{y+1}{yz+y+1}\)

\(=\frac{yz}{yz+y+1}+\frac{y+1}{yz+y+1}\)

\(=\frac{yz+y+1}{yz+y+1}\)

\(=1\)

Le Thi Khanh Huyen
Xem chi tiết
Trần Thị Loan
25 tháng 8 2015 lúc 14:46

x - y - z = 0 => x - z = y ; y - x = -z; z+ y = x

\(B=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}=\frac{y.\left(-z\right).x}{xyz}=\frac{-xyz}{xyz}=-1\)

Game Master VN
9 tháng 7 2017 lúc 20:34

ai tích mình tích lại nhưng phải lên điểm mình tích gấp đôi